Return to search

Josephson effect and high frequency emission in a carbon nanotube in the Kondo regime / Effet Josephson et émission haute fréquence dans un nanotube de carbone dans le régime Kondo

Cette thèse est consacrée au transport quantique à travers une impureté Kondo, formée dans une boîte quantique réalisée dans un nanotube de carbone. L’effet Kondo est ainsi sondé à travers deux situations : en compétition avec l’effet Josephson induit dans le nanotube par des contacts supraconducteurs et à travers son émission haute fréquence. Dans une première série d’expériences, nous avons introduit un nanotube dans un SQUID, afin de mesurer la relation entre son supercourant et la différence de phase supraconductrice à ses bornes. Nous avons mesuré cette relation lorsque les corrélations Kondo et supraconductrices sont du même ordre de grandeur et montré que l’état du système, singulet ou doublet (correspondant respectivement à une jonction 0 ou π) peut alors être contrôlé par la phase supraconductrice. Nous avons également montré que, si un deuxième niveau d’énergie participe au transport des paires de Cooper, la transition 0-π n’est plus une transition du premier ordre comme c’est le cas quand un seul niveau est impliqué. Dans la deuxième partie de la thèse, le nanotube de carbone est couplé, aux fréquences déterminées par un résonateur, à une jonction tunnel supraconductrice servant de détecteur on-chip de bruit haute fréquence. Ceci nous a permis de mesurer le bruit en émission de la boîte quantique dans le régime Kondo avec des couplages aux réservoirs plus ou moins symétriques. Nos mesures posent le problème de l’asymétrie spatiale du bruit mesuré et semblent montrer que, plus le couplage aux réservoirs est symétrique, plus la résonance Kondo est affaiblie dans une situation hors équilibre. Enfin, ce dispositif a été utilisé afin de mesurer l’émission Josephson AC d’un nanotube avec des électrodes supraconductrices, afin de voir ce que devient la compétition entre l’effet Kondo et la supraconductivité à haute fréquence. Ces mesures révèlent une diminution de l’émission Josephson alors que l’on a un maximum de supercourant. / This thesis is dedicated to quantum transport through a Kondo impurity, formed in a carbon nanotube quantum dot. We probe the Kondo effect in two situations: in competition with the Josephson effect induced in the nanotube by superconducting contacts and through its high frequency emission. In a first experiment, we have introduced a nanotube in a SQUID in order to measure its supercurrent as a function of the superconducting phase across it. We have measured this quantity in the regime where the Kondo and superconducting correlations are of the same order of magnitude and shown that the ground state of the system, singlet or doublet (corresponding respectively to 0 and π junctions), is then controlled by the superconducting phase. We have also demonstrated that, if a second energy level participates in the transport of Cooper pairs, the 0-π transition is not anymore a first order one as it is the case when only one level is involved. In the second part of the thesis, the carbon nanotube is coupled, at some frequencies determined by a resonator, to a tunnel superconducting junction which is used as an on-chip high-frequency noise detector. This enables the measurement of the emission noise of the quantum dot in the Kondo regime, with reservoirs coupled either symmetrically or not to the dot. Our measurements raise the problem of the spatial asymmetry of the measured noise and seem to show that, the more symmetric is the coupling of the reservoirs to the dot, the more the Kondo resonance is weaken in an out-of-equilibrium situation. Finally, this setup has been used in order to measure the AC Josephson emission of a nanotube contacted with superconducting electrodes, in order to extend our investigation of the competition between the Kondo effect and superconductivity at high frequency. These measurements reveal a decrease of the Josephson emission observed together with a maximum of supercurrent.

Identiferoai:union.ndltd.org:theses.fr/2016SACLS319
Date06 October 2016
CreatorsDelagrange, Raphaëlle
ContributorsUniversité Paris-Saclay (ComUE), Deblock, Richard
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0022 seconds