Avian embryonic development, hatchability, and post-hatch performance are greatly affected by temperature. Therefore, a pragmatic, minimally invasive, and industrially applicable method for the precise and accurate measurement of embryonic temperature is needed. The objective of this research was to develop such a method. Preliminary research concerning air cell depth profiles and the relationships of eggshell thickness to thermal gradients across the shells of broiler hatching eggs were determined. This provided information for appropriately positioning and timing wired thermistor probe insertion into egg air cells for the practical and accurate estimation of embryo temperature. The relationship between air cell temperature readings using transponders and wired thermistor probe network assemblies were likewise determined. Embryo temperature estimation using probes was shown to be a satisfactory, but their depth should be adjusted daily by 0.042 cm after Day 12 of incubation in order to mirror transponder temperature readings.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-5311 |
Date | 11 August 2017 |
Creators | Durojaye, Oluwaseun Ayobami |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0022 seconds