Return to search

Inverse Toeplitz Eigenvalue Problem

In this thesis, we consider the inverse Toeplitz eigenvalue problem which recover a real symmetric Toeplitz with desired eigenvalues. First some lower dimensional cases are solved by algebraic methods. This gives more insight on the inverse problem. Next, we explore the geometric meaning of real symmetric Toeplitz matrices. For high dimensional cases, numerical are unavoidable. From our numerical experiments, Newton-like methods are very effective for this problem.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0715104-140403
Date15 July 2004
CreatorsChen, Jian-Heng
ContributorsJen-Yuan Chen, Zi-Cai Li, Tzon-Tzer Lu, Chien-Sen Huang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0715104-140403
Rightsoff_campus_withheld, Copyright information available at source archive

Page generated in 0.0023 seconds