Le but de cette thèse est de trouver des bornes supérieures pour les valeurs propres des opérateurs naturels agissant sur les fonctions d’une variété compacte (M; g). Nous étudions l’opérateur de Laplace–Beltrami et des opérateurs du type laplacien. Dans le cas du laplacien, deux aspects sont étudiés. Le premier aspect est d’étudier des relations entre la géométrie intrinsèque et les valeurs propres du laplacien. Nous obtenons des bornes supérieures ne dépendant que de la dimension et d’un invariant conforme qui s’appelle le volume conforme minimal. Asymptotiquement, ces bornes sont consistantes avec la loi de Weyl. Elles améliorent également les résultats de Korevaar et de Yang et Yau. La méthode employée est intéressante en soi. Le deuxième aspect est d’étudier la relation entre la géométrie extrinsèque et les valeurs propres du laplacien agissant sur des sous-variétés compactes de RN et de CPN. Nous étudions un invariant extrinsèque qui s’appele l’indice d’intersection. Pour des sous-variétés compactes de RN, nous généralisons les résultats de Colbois, Dryden et El Soufi et obtenons des bornes supérieures qui sont stables par des petites perturbations. Pour des sous-variétés de CPN, nous obtenons une borne supérieure ne dépendant que du degré des sous-variétés. Pour des opérateur du type laplacien, une modification de notre méthode donne des bornes supérieures pour les valeurs propres des opérateurs de Schrödinger en termes du volume conforme minimal et de l’intégrale du potentiel. Nous obtenons également les bornes supérieures pour les valeurs propres du laplacien de Bakry–Émery dépendant d’invariants conformes. / The purpose of this thesis is to find upper bounds for the eigenvalues of natural operators acting on functions on a compact Riemannian manifold (M; g) such as the Laplace–Beltrami operator and Laplace-type operators. In the case of the Laplace-Beltrami operator, two aspects are investigated: The first aspect is to study relationships between the intrinsic geometry and eigenvalues of the Laplacian operator. In this regard, we obtain upper bounds depending only on the dimension and a conformal invariant called min-conformal volume. Asymptotically, these bounds are consistent with the Weyl law. They improve previous results by Korevaar and Yang and Yau. The method which is introduced to obtain the results, is powerful and interesting in itself. The second aspect is to study the interplay of the extrinsic geometry and eigenvalues of the Laplace–Beltrami operator acting on compact submanifolds of RN and of CPN. We investigate an extrinsic invariant called the intersection index studied by Colbois, Dryden and El Soufi. For compact submanifolds of RN, we extend their results and obtain upper bounds which are stable under small perturbation. For compact submanifolds of CPN, we obtain an upper bound depending only on the degree of submanifolds. For Laplace type operators, a modification of our method lead to have upper bounds for the eigenvalues of Schrödinger operators in terms of the min-conformal volume and integral quantity of the potential. As another application of our method, we obtain upper bounds for the eigenvalues of the Bakry–Émery Laplace operator depending on conformal invariants.
Identifer | oai:union.ndltd.org:theses.fr/2012TOUR4036 |
Date | 14 June 2012 |
Creators | Hassannezhad, Asma |
Contributors | Tours, El Soufi, Ahmad, Colbois, Bruno, Ranjbar-Motlagh, Alireza |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English, French |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds