A well-known result in spectral graph theory states that if a graph has an equitable partition then the eigenvalues of the associated divisor graph are a subset of the graph's eigenvalues. A natural question question is whether it is possible to recover the remaining eigenvalues of the graph. Here we show that if a graph has a Hermitian adjacency matrix then the spectrum of the graph can be decomposed into a collection of smaller graphs whose eigenvalues are collectively the remaining eigenvalues of the graph. This we refer to as a complete equitable decomposition of the graph.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10812 |
Date | 12 December 2022 |
Creators | Drapeau, Joseph Paul |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | https://lib.byu.edu/about/copyright/ |
Page generated in 0.0021 seconds