Return to search

Double-TOP trap for ultracold atoms

The Double-TOP trap is a new type of magnetic trap for neutral atoms, and is suitable for Bose-Einstein condensates (BECs) and evaporatively cooled atoms. It combines features from two other magnetic traps, the Time-averaged Orbiting Potential (TOP) and Ioffe-Pritchard traps, so that a potential barrier can be raised in an otherwise parabolic potential. The cigar-like cloud of atoms (in the single-well configuration) is divided halfway along its length when the barrier is lifted.
A theoretical model of the trap is presented. The double-well is characterised by the barrier height and well separation, which are weakly coupled. The accessible parameter space is found by considering experimental limits such as noise, yielding well separations from 230 [mu]m up to several millimetres, and barrier heights from 65 pK to 28 [mu]K (where the energies are scaled by Boltzmann�s constant). Potential experiments for Bose-Einstein condensates in this trap are considered.
A Double-TOP trap has been constructed using the 3-coil style of Ioffe-Pritchard trap. Details of the design, construction and current control for these coils are given. Experiments on splitting thermal clouds were carried out, which revealed a tilt in the potential. Two independent BECs were simultaneously created by applying evaporative cooling to a divided thermal cloud.
The Double-TOP trap is used to form a linear collider, allowing direct imaging of the interference between the s and d partial waves. By jumping from a double to single-well trap configuration, two ultra-cold clouds are launched towards a collision at the trap bottom. The available collision energies are centred on a d-wave shape resonance so that interference between the s and d partial waves is pronounced. Absorption imaging allows complete scattering information to be collected, and the images show a striking change in the angular distribution of atoms post-collision. The results are compared to a theoretical model, verifying that the technique is a useful new way to study cold collisions.

Identiferoai:union.ndltd.org:ADTP/266289
Date January 2005
CreatorsThomas, Nicholas, n/a
PublisherUniversity of Otago. Department of Physics
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Nicholas Thomas

Page generated in 0.0018 seconds