Neste trabalho, tivemos como objetivo estudar a existência de soluções fracas não triviais para o problema elíptico com não linearidade crítica { - Δu = λu + u2* - 1+ + g(x, u+) + f(x); em Ω u = 0; sobre ∂ Ω , (P) onde Ω é um domínio limitado com fronteira suave em ℝN, com N ≥ 3, 2* = 2N / (N - 2) é o expoente crítico de Sobolev, u+ = max(u; 0), g ∈ C(Ω̄ x ℝ, ℝ+), λ > λ1, λ ∉ σ (- Δ) e f ∈ Lr> (Ω), com r > N. Com o intuito de observar as mudanças que ocorrem do caso subcrítico para o crítico e as diferentes técnicas variacionais para a resolução de problemas elípticos, estudamos, inicialmente, um problema um pouco mais antigo que (P), que, por sua vez, motivou seu estudo. Tal problema é { - Δu = λ u + up+ +f; em Ω u = 0; sobre ∂ Ω(P\') onde consideramos o caso subcrítico, ou seja, quando p ∈ (1; 2* - 1). Com o auxílio do TEOREMA DE ENLACE verificamos que tanto (P) quanto (P\') têm pelo menos duas soluções fracas não triviais. / In this work, we aimed to study the existence of nontrivial weak solutions for the elliptic problem with critical non-linearity { - Δu = λu + u2* - 1+ + g(x, u+) + f(x); in Ω u = 0; on ∂ Ω , (P) where Ω is a bounded domain with smooth boundary in ℝN, with N ≥ 3, 2* = 2N / N -2 is the critical Sobolev exponent, u+ = max(u; 0), g ∈ C(Ω̄ x ℝ, ℝ+), λ > λ1, λ ∉ σ (- Δ) and f ∈ Lr (Ω), with r > N. In order to observe different variational techniques for solving elliptic problems, we studied initially a problem a little older than (P), which, in turn, led to its study. This problem is { - Δu = λ u + up+ +f; inΩ u = 0; on ∂ Ω(P\') where we consider the subcritical case, that is, when p ∈ (1, 2* - 1). With the aid of the LINKING THEOREM we see that both (P) and (P\') have at least two nontrivial weak solutions.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10102016-163017 |
Date | 23 June 2015 |
Creators | Araújo, Maycon Sullivan Santos |
Contributors | Massa, Eugenio Tommaso |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0023 seconds