Return to search

I-FEM une nouvelle méthode de calcul par éléments finis pour la résolution de problèmes inverses en mécanique des solides déformables : application à la caractérisation de la plaque d'athérome / I-FEM a direct finite element method for the resolution of inverse problem in solid mechanics : application to atherosclerotic plaque elasticity reconstruction

Ce travail de thèse s'articule autour de deux axes principaux : l'aide à la détection et l'aide à la caractérisation de la plaque d'athérosclérose. Il s'inscrit dans un programme de recherche qui vise à développer de nouveaux moyens de diagnostic des plaques d'athérome coronariennes et de prédiction du risque de rupture. La première partie de ce manuscrit présente l'athérosclérose, ses conséquences sur la santé des patients et les enjeux de modélisation auxquels nous sommes confrontés, notamment d'un point de vue Mécanique et Mathématique. Ce travail s'inscrit dans la lignée des problèmes inverses en mécanique des milieux continus et plus précisément en élasticité. La deuxième partie présente une méthode de détection de plaque basée sur le principe de palpographie. Cette nouvelle approche permet la prise en compte de toutes les composantes du tenseur des déformations mesurées à l'aide d'une technique intravasculaire ultrasonore (IVUS). La troisième partie est consacrée à l'élaboration d'outils de caractérisation de la plaque d'athérome et la reconstruction des propriétés mécaniques de ses différents constituants. Une nouvelle approche (I-FEM) basée sur la méthode des éléments finis est élaborée pour la résolution des problèmes inverses en élasticité linéaire. On présente le développement de ce nouveau code de calculs éléments finis qui a permis de reconstruire avec succès les cartographies d'élasticité des plaques d'athérome. De façon intéressante, I-FEM est basée sur la discrétisation des propriétés mécaniques (i.e. module d'Young et coefficient de Poisson) aux nœuds de l'élément fini. De plus, une deuxième méthode moins sensible au bruit (appelée "Fast-Modulography") est aussi proposée dans cette recherche doctorale. Elle s'inspire de la technique revisitée de palpographie développée au sein de notre laboratoire et a aussi pour but de fournir la cartographie de module d'Young (i.e. le modulogramme) de la lésion athéromateuse explorée par IVUS. Les méthodes proposées ont toutes été validées sur des données simulées, basées sur des géométries de plaques réelles acquises in-vivo à l'hôpital Cardiologique de Lyon. Une analyse de la sensibilité au bruit issu du signal ultrasonore, ainsi qu'une étude sur la stabilité et la convergence de la solution pour chacune de ces méthodes a été effectuée. L'ensemble des outils proposés semblent prometteurs. Leur utilisation pourrait aider à la compréhension des mécanismes biologiques liés au développement de la plaque d'athérome. En effet, ils pourraient permettre d'analyser les variations des propriétés mécaniques des constituants de la plaque lors de son évolution. De plus, ces mêmes outils cliniques nous permettrons de mieux diagnostiquer le degré de vulnérabilité à la rupture de la plaque explorée in vivo. / This thesis is structured around two main axes: 1) Atherosclerotic plaque detection, and 2) Atherosclerotic plaque characterization. It is a part of a research program which aims to develop new clinical tools to detect coronary atherosclerotic lesions and to predict the risk of rupture. The first part of this manuscript presents the atherosclerosis, its impact on patients' health and introduces modeling challenges we are facing, in particular in applied mechanics and mathematics. This work deals with the resolution of inverse problem in elasticity knowing the strain distributions (i.e. the elastograms). The second part of my manuscript presents a new detection method based on palpography technique. This original technique allows us, by considering all strain components, to quantify accurately the circumferential arterial wall compliance based on intravascular ultrasound (IVUS) sequence. The third part is devoted to the development of an elasticity reconstruction tool for atherosclerotic plaques. An original approach (named I-FEM), based on finite element method, is proposed for the resolution of inverse problem in linear elasticity. We detail the mathematical development of this new code, which was successfully used to reconstruct the Young's modulus maps (i.e. modulograms) of atherosclerotic plaques. Interestingly, I-FEM is based on the discretization of mechanical properties (Young Modulus and Poisson's ratio) at the finite element's nodes. Finally, in the last chapter of this part, I proposed a more robust (with regard to noise) reconstruction elasticity algorithm (called Fast-Modulography). This method was directly inspired by our previous study developed on palpography technique. It also aims to give a Young's modulus map of the atherosclerotic plaque explored by IVUS.All the proposed methods have been validated on simulated data, based on real geometries recorded in-vivo at the Cardiological hospital of Lyon. Analyzes of the noise sensitivity for IVUS data, and a study of the stability and the convergence of the solution have been conducted for all approaches.All these novel techniques appear to be promising. Using them could help for a better understood of the biological mechanisms involved in the atherosclerotic plaque development. Indeed, they could provide information about changes of mechanical properties during the plaque evolution. Furthermore, such clinical tools may be used to diagnose the risk of rupture of a vulnerable atherosclerotic plaque.

Identiferoai:union.ndltd.org:theses.fr/2013GRENS028
Date15 October 2013
CreatorsBouvier, Adeline
ContributorsGrenoble, Ohayon, Jacques, Finet, Gérard
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds