Return to search

Dynamic modelling and control of a wheeled mobile platform.

M. Tech. Electrical Engineering. / Wheeled Mobile Platforms have considerable acceptance and dominance in the field of transportation. While most of these platforms have been designed for able users, very few special designs are available for the physically disabled persons. With increasing numbers of disabled peoples around the world, accommodative and safer displacement means are called for. A normal wheelchair platform with two front castor wheel and two independently driven rear wheels is therefore considered in this study for modelling and control. Based on the nature of persons using wheelchairs, better and much easy to control wheelchair platforms are necessitated. To achieve such objective, this research is focused on two main threads: dynamic modelling and control. In modelling, the aim is to present a dynamic model of wheelchair platform that takes into account slipping parameters and frictional/traction forces experienced on motion. It also intends to account for the effects of gravitational forces that would be experienced by the wheelchair and its effect on the platforms during uphill and downhill movements. Lagrange formalism is utilised in the design of this dynamic model. In control, the objective is to ensure that the platform tracks the reference linear velocity and the reference angular orientation as desired. With such control commands, a simple access device may be employed to ensure that people with severe disability also have a chance of controlling the wheelchair. Since no zero dynamics arise with linear velocity and angular orientation as the platforms outputs, standard input-output feedback linearisation is considered and applied in the linearisation of the model and in the development of the control law. Successfully simulated results demonstrating the performance of the proposed dynamic model and control law are presented for verification. The entire dynamic model and the controller are simulated in a software tool MATLAB and SIMULINK.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:tut/oai:encore.tut.ac.za:d1000503
Date January 2010
CreatorsOnyango, Stevine Obura.
ContributorsFrench South African Technical Institute in Electronics, Hamam, Yskandar., Qi, Guoyuan.
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeText
FormatPDF

Page generated in 0.0018 seconds