Return to search

Plume Source Localization and Boundary Prediction

Plume location and prediction using mobile sensors is the main contribution of this thesis. Plume concentration values measured by chemical sensors at different locations are used to estimate the source of the plume. This is achieved by employing a stochastic approximation technique to localize the source and compare its performance to the nonlinear least squares method. The source location is then used as the initial estimate for the boundary tracking problem. Sensor measurements are used to estimate the parameters and the states of the state space model of the dynamics of the plume boundary. The predicted locations are the reference inputs for the LQR controller. Measurements at the new locations (after the correction of the prediction error) are added to the set of data to refine the next prediction process. Simulations are performed to demonstrate the viability of the methods developed. Finally, interpolation using the sensors locations is used to approximate the boundary shape.

Identiferoai:union.ndltd.org:UTENN_/oai:trace.tennessee.edu:utk_gradthes-1090
Date01 August 2009
CreatorsSahyoun, Samir
PublisherTrace: Tennessee Research and Creative Exchange
Source SetsUniversity of Tennessee Libraries
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.0025 seconds