Return to search

Algorithms for enhanced artifact reduction and material recognition in computed tomography

Computed tomography (CT) imaging provides a non-destructive means to examine the interior of an object which is a valuable tool in medical and security applications. The variety of materials seen in the security applications is higher than in the medical applications. Factors such as clutter, presence of dense objects, and closely placed items in a bag or a parcel add to the difficulty of the material recognition in security applications. Metal and dense objects create image artifacts which degrade the image quality and deteriorate the recognition accuracy. Conventional CT machines scan the object using single source or dual source spectra and reconstruct the effective linear attenuation coefficient of voxels in the image which may not provide the sufficient information to identify the occupying materials.

In this dissertation, we provide algorithmic solutions to enhance CT material recognition. We provide a set of algorithms to accommodate different classes of CT machines. First, we provide a metal artifact reduction algorithm for conventional CT machines which perform the measurements using single X-ray source spectrum. Compared to previous methods, our algorithm is robust to severe metal artifacts and accurately reconstructs the regions that are in proximity to metal. Second, we propose a novel joint segmentation and classification algorithm for dual-energy CT machines which extends prior work to capture spatial correlation in material X-ray attenuation properties. We show that the classification performance of our method surpasses the prior work's result.

Third, we propose a new framework for reconstruction and classification using a new class of CT machines known as spectral CT which has been recently developed. Spectral CT uses multiple energy windows to scan the object, thus it captures data across higher energy dimensions per detector. Our reconstruction algorithm extracts essential features from the measured data by using spectral decomposition. We explore the effect of using different transforms in performing the measurement decomposition and we develop a new basis transform which encapsulates the sufficient information of the data and provides high classification accuracy. Furthermore, we extend our framework to perform the task of explosive detection. We show that our framework achieves high detection accuracy and it is robust to noise and variations. Lastly, we propose a combined algorithm for spectral CT, which jointly reconstructs images and labels each region in the image. We offer a tractable optimization method to solve the proposed discrete tomography problem. We show that our method outperforms the prior work in terms of both reconstruction quality and classification accuracy.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/27454
Date20 February 2018
CreatorsBabaheidarian, Parisa
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.002 seconds