Return to search

GaN-dielectric interface formation for gate dielectrics and passivation layers using remote plasma processing

In previous studies, device quality Si-SiO2 interfaces and dielectric bulk films (SiO2) were prepared using a two-step process; i) remote plasma-assisted oxidation (RPAO) to form a superficially interfacial oxide (~0.6 nm) and ii) remote plasma enhanced chemical vapor deposition (RPECVD) to deposit the oxide film. The same approach has been applied to the GaN-SiO2 system. After a 300 oC remote N2/He plasma treatment of the GaN surface, residual C and Cl were reduced below Auger electron spectroscopy (AES) detection, and the AES peak ratio of O KLL and N KLL was ~0.06 or ~0.1 monolayer of oxygen. RPAO of GaN surfaces using O2, N2O, and N2O in N2 source gases were investigated by on-line AES to determine the oxidation kinetics and chemical composition of the interfacial oxide. Without an RPAO step, subcutaneous oxidation of GaN takes place during RPECVD deposition of SiO2, and on-line AES indicates a ~0.6-0.8 nm subcutaneous oxide. Compared to single step SiO2 deposition, significantly reduced interface state density (Dit) was obtained at the GaN-SiO2 interface by independent control of GaN-Ga2O3 interface formation by thin RPAO oxide (~1 nm) and SiO2 film deposition by RPECVD. High-low frequency method and conductance method indicate that Dit of GaN Metal-Oxide-Semiconductor (MOS) sample without RPAO is ~5 times larger than that of the sample with RPAO. For the GaN MOS structure with remote plasma oxidation and nitridation, Dit determined at DCmax was low-to-mid x 1011 cm-2eV-1. Also, we report on high temperature and photo-assisted capacitance-voltage (C-V) characteristics.

Identiferoai:union.ndltd.org:NCSU/oai:NCSU:etd-05082003-023332
Date15 May 2003
CreatorsBae, Choelhwyi
ContributorsGerald Lucovsky
PublisherNCSU
Source SetsNorth Carolina State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://www.lib.ncsu.edu/theses/available/etd-05082003-023332/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds