Return to search

Structure And Properties Of Polymer-derived Sibcn Ceramics

Polymer-derived ceramics (PDCs) are a unique class of multifunctional materials synthesized by thermal decomposition of polymeric precursors. Due to their unique and excellent properties and flexible manufacturing capability, PDC is a promising technology to prepare ceramic fibers, coatings, composites and micro-sensors for high-temperature applications. However, the structure-property relationships of PDCs have not been well understood. The lack of such understandings drastically limited the further developments and applications of the materials. In this dissertation, the structure and properties of amorphous polymer-derived silicon carbonitride (SiCN) and silicoboron carbonitride (SiBCN) have been studied. The SiCN was obtained using commercially available polysilazane as pre-ceramic precursor, and the SiBCN ceramics with varied Si-to-B ratio were obtained from polyborosilazanes, which were synthesized by the hydroboration and dehydrocoupling reaction of borane and polysilazane. The structural evolution of polymer-derived SiCN and SiBCN ceramics from polymer to ceramics was investigated by NMR, FTIR, Raman, EPR, TG/DTA, and XRD. The results show a phaseseparation of amorphous matrix and a graphitization of “free” carbon phase, and suggest that the boron doping has a great influence on the structural evolution. The electric and dielectric properties of the SiCN and SiBCNs were studied by I-V curves, LCR Meter, and network analyzer. A new electronic conduction mechanism and structure model has been proposed to account for the relationships between the observed properties and microstructure of the materials. Furthermore, the SiBCN ceramics showed the improved dielectric properties at characterization iv temperature up to 1300 ºC, which allows the fabrication of ultrahigh-temperature wireless microsensors for extreme environments.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-3104
Date01 January 2012
CreatorsChen, Yaohan
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0026 seconds