L’objectif de cette thèse était de réaliser de nouveaux matériaux à émissivité variable dans l’infrarouge pour une application de régulation thermique des satellites artificiels. Dans ce contexte, l’étude s’est concentrée sur l’élaboration et la caractérisation de dispositifs électroémissifs à base d’un polymère conducteur électronique, le poly(3,4-éthylènedioxythiophène) (PEDOT) obtenu par électropolymérisation. Ces dispositifs électroémissifs ont ensuite été évalués dans des conditions partiellement représentatives de l’environnement spatial.La première partie de ce manuscrit a été consacrée à l’incorporation du PEDOT par électropolymérisation au sein d’une matrice hôte, formée à partir d’un réseau interpénétré de polymère (RIP) à base de caoutchouc nitrile (NBR) et de poly(oxyde d’éthylène) (POE). L’électropolymérisation par une méthode de chronopotentiométrie pulsée a permis d’obtenir des couches actives de PEDOT reproductibles, démontrant ainsi que le procédé électrochimique est bien contrôlé. En parallèle, des dispositifs électroémissifs de référence dont la couche active de PEDOT a été synthétisée par une polymérisation chimique oxydante, ont été élaborés. Le comportement électrochimique, les propriétés optiques dans l’infrarouge et la morphologie des couches actives obtenues par électropolymérisation ont été comparés à celles obtenues par une polymérisation chimique oxydante. Une répartition différente du PEDOT en fonction de la méthode d’incorporation a notamment été démontrée.Dans la deuxième partie de ce manuscrit, le comportement actionneur des dispositifs électroémissifs, qui est majoritairement induit par une insertion ou une expulsion d’ions au cours du procédé redox, a été étudié. Un screening de liquides ioniques, possédant des structures chimiques différentes, a été réalisé. Le mécanisme d’ion impliqué lors de la réaction redox a été identifié par une méthode simple consistant à observer la variation de volume de la couche active de PEDOT. Cette méthode a permis de souligner le rôle prédominant des cations au sein du procédé redox. L’utilisation de deux liquides ioniques a notamment permis une réduction significative de la déformation du dispositif électroémissif de référence tout en conservant de bonnes propriétés optiques dans l’infrarouge. Des mélanges de liquides ionique et de sel de lithium ont également été étudiés. En fonction de la concentration en sel de lithium au sein d’un liquide ionique, il est possible de contrôler le mécanisme ionique qui gouverne la réaction redox. Une concentration en sel en particulier entraine à la succession des deux mécanismes ioniques, ce qui donne lieu à un faible effet actionneur tout en préservant l’électro-activité et les propriétés optiques dans l’infrarouge du système.Dans la dernière partie de ce manuscrit, un prototype a été réalisé et évalué pour une application de contrôle thermique. Des radiateurs à base de dispositifs électroémissifs ont été fabriqués puis testés dans des conditions proches de l’environnement spatial. Ces radiateurs ont ensuite été comparés à la technologie actuellement utilisée sur les satellites artificiels, les réflecteurs optiques solaires. Des changements de température significatifs (12 °C) ont été mis en évidence, démontrant la pertinence de ce type de système pour une application de régulation thermique. Une faible consommation électrique de ces systèmes a été mise en avant au cours de ces travaux. Associé à la faible masse embarquée les dispositifs électroémissifs élaborés ont ainsi un intérêt double pour l’application visée par rapport à la technologie actuelle. / The aim of this PhD work is to design new coatings with variable emissivity in the infrared for an application of thermal regulation of artificial satellites. In this context, the study focuses on the development of electroemissive devices based on an electronically conducting polymer, the poly (3,4-ethylenedioxythiophene) (PEDOT). These electroemissive devices are then evaluated under space like environment.The first part of this manuscript was devoted to the incorporation of PEDOT by electropolymerization within a host matrix based on an interpenetrating polymer network (IPN) including nitrile butadiene rubber (NBR) and poly (ethylene oxide) (PEO). Electropolymerization by a pulsed chronopotentiometry method resulted in reproducible active PEDOT layers, demonstrating that the electrochemical process is well-controlled. In parallel, electroemissive deviceswhose active layer of PEDOT was synthesized by an oxidative chemical polymerization, were elaborated as refernce devices. The electrochemical behavior, the infrared optical properties and the morphology of the active layers obtained by electropolymerization were compared with those obtained by an oxidative chemical polymerization. In particular, different distribution of PEDOT according to the incorporation method was demonstrated.In the second part of this manuscript, the actuator behavior of electroemissive devices, that is predominantly induced by insertion or expulsion of ions during the redox process, was studied. A screening of ionic liquids with different chemical structures was carried out. The ion mechanism involved during the redox process was identified by a simple method consisting in observing the volume variation of the PEDOT active layer. This method highlighted the predominant role of cations in the redox process. The use of two ionic liquids allowed a considerable reduction of the actuator behavior of a reference electroemissive device while maintaining high optical properties in the infrared. Mixtures of ionic liquids and lithium salt were also studied. Depending on the lithium salt concentration, the possibility of controlling the ionic mechanism that governs the redox reaction was underlined. A salt concentration in particular leads to the succession of the two ionic mechanisms and results in a low actuator behavior while preserving the electro-activity and the optical properties of the system.In the last part of this manuscript, a prototype was evaluated for a thermal control application. Radiators based on electroemissive devices were fabricated and tested under conditions close to the space environment. These radiators were then compared to the technology currently used on artificial satellites, optical solar reflectors. Significant temperature changes (12 °C) were demonstrated, proving the relevance of this type of system for the thermal regulation of satellites. In addition, a low electrical consumption of these systems was highlighted during this work. Associated to a reduced on-board weight, the electroemissive devices designed at the LPPI, have thus a double interest for the intended application with respect to the current technology.
Identifer | oai:union.ndltd.org:theses.fr/2018CERG0996 |
Date | 28 March 2018 |
Creators | Petroffe, Gwendoline |
Contributors | Cergy-Pontoise, Aubert, Pierre-Henri, Vidal, Frédéric, Cantin-Rivière, Sophie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds