The optimal conditions for deposition of zinc-nickel alloys onto stainless steel discs in alkaline solutions have been examined. In the past cadmium has been used because it shows good corrosion protection, but other methods are being examined due to the high toxicity and environmental threats posed by its use. Zinc has been found to provide good corrosion resistance, but the corrosion resistance is greatly increased when alloyed with nickel. The concentration of nickel in the deposit has long been a debated issue, but for basic solutions a nickel concentration of 8-15% appears optimal. However, deposition of zinc-nickel alloys from acidic solutions has average nickel concentrations of 12-15%. Alkaline conditions give a more uniform deposition layer, or better metal distribution, thereby a better corrosion resistance. Although TEA (triethanolamine) is most commonly used to complex the metals in solution, in this work I examined TEA along with other complexing agents. Although alkaline solutions have been examined, most research has been done in pH ≥ 12 solutions. However, there has been some work performed in the pH 9.3-9.5 range. This work examines different ligands in a pH 9.3-9.4 range. Direct potential plating and pulse potential plating methods are examined for optimal platings. The deposits were examined and characterized by XRD.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc12101 |
Date | 12 1900 |
Creators | Conrad, Heidi A. |
Contributors | Golden, Teresa D., Acree, William E. (William Eugene) |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Copyright, Conrad, Heidi A., Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0043 seconds