Magister Scientiae - MSc / The objective of this research was to develop highly efficient and yet effective MnO2 electrode materials for supercapacitors applications. Most attention had focussed on MnO2 as a candidate for pseudo-capacitor, due to the low cost of the raw material and the fact that manganese is more environmental friendly than any other transition metal oxide system. The surface area and pore distribution of MnO2 can be controlled by adjusting the reaction time. The MnO2 synthesised under optimum conditions display high capacitance, and exhibit good cycle profile. This work investigates the ways in which different morphological structures and pore sizes can affect the effective capacitance. Various -MnO2 were successfully synthesised under low temperature conditions of 70 oC and hydrothermal conditions at 120 oC. The reaction time was varied from 1 to 6 hours to optimise the conditions. KMnO4 was reduced by MnCl.H2O under low temperature, whereas MnSO4.4H2O, (NH4)2S2O8 and (NH4)2SO4 were co-precipitated under hydrothermal conditions in a taflon autoclave to synthesise various -MnO2 nano-structures. / South Africa
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/2602 |
Date | January 2010 |
Creators | Mothoa, Sello Simon |
Contributors | Ji, S., Key, David, Mohamed, Rushanah, Dept. of Chemistry, Faculty of Science |
Publisher | University of the Western Cape |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | University of the Western Cape |
Page generated in 0.0033 seconds