Return to search

Fiber Optimization for Operation Beyond Transverse Mode Instability Limitations

Transverse Mode Instabilities (TMIs) stand as a fundamental limitation to power and brightness scaling in laser systems based upon optical fiber technologies. This work comprises experimental and theoretical investigations into fiber laser design that should minimize the effects of Stimulated Thermal Rayleigh Scattering. Theoretical discussions and simulations focus on how fiber parameters affect transverse mode coupling. These include core geometry optimization, pump geometry optimization, in addition to the effects of HOM content and losses on the TMI threshold. Experimentally, a high-power laser facility is commissioned with beam quality diagnostics to quantify the thresholds of the onset of modal interferences and their impacts on beam quality. These diagnostics include high-resolution Fourier Transform Interferometry (FTI) and in-situ power-in-the-bucket measurements. The design and characterization capabilities developed here are crucial to the development of next-generation high-power fiber laser capabilities.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-6872
Date01 January 2018
CreatorsBradford, Joshua
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0075 seconds