Glass-ceramics (GC) are promising candidates for gradient refractive index (GRIN) optics. These multi-phase, composite materials also exhibit improved physical properties as compared to the parent base glass resulting from the formation of a secondary crystalline phase(s). Nanocrystal phase formation in a multi-component chalcogenide glass (ChG), (GeSe2-3As2Se3)(1-x)-(PbSe)x glass where x = 0-40 has been investigated, and the role of the starting material morphology has been correlated to the resulting composite's optical properties including refractive index, transmission, dispersion, and thermo-optic coefficient. Optical property evolution was related to the type and amount of the crystal phases formed, since through control of the local volume fraction of crystalline phase(s), the effective material properties of the composite can locally be varied. Through computational and experimental studies, tailored nanocomposites exhibiting gradient index properties have been realized. A Raman spectroscopic technique was developed as a means to spatially quantify the extent of conversion from glass to glass ceramic, and to confirm that the scale length of the local refractive index modification can be correlated to the extent of crystallization as validated by X-ray diffraction (XRD). Spatial control of the crystallization was examined by using a laser to locally modify the amount of nucleation and/or growth of crystallites in the glass. A novel technique converse to laser-induced crystallization was also developed and demonstrated that a glass ceramic could be locally re-vitrified back to a fully glassy state, through a laser-induced vitrification (LIV) method. Proof-of-concept demonstrator optics were developed using furnace and laser induced crystallization methods to validate experimental and computational approaches to modify the local volume fraction of nano-crystals. These demonstrators exhibited tailorable optical functionality as focusing optics and diffractive optics. This work paves the way for the design and fabrication of nanocomposite GRIN optics and their use in the mid-wave infrared.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-6752 |
Date | 01 January 2017 |
Creators | Sisken, Laura |
Publisher | University of Central Florida |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0017 seconds