Return to search

Holographic Optical Elements for Visible Light Applications in Photo-thermo-refractive Glass

This dissertation reports on design and fabrication of various optical elements in Photo-thermo-refractive (PTR) glass. An ability to produce complex holographic optical elements (HOEs) for the visible spectral region appears very beneficial for variety of applications, however, it is limited due to photosensitivity of the glass confined within the UV region. First two parts of this dissertation present two independent approaches to the problem of holographic recording using visible radiation. The first method involves modification of the original PTR glass rendering it photosensitive to radiation in the visible spectral region and, thus, making possible the recording of holograms in PTR glass with visible radiation. The mechanism of photoionization in this case is based on an excited state absorption upconversion process in the glass when doped with Tb3+. By contrast, the second approach uses the original Ce3+ doped PTR glass and introduces a new modified technique for hologram formation that allows for holographic recording with visible light. Complex HOEs including holographic lenses and holographic curved mirrors were fabricated in PTR glass with visible light using both techniques. The third part of the dissertation takes a step in a different direction and discusses the development of the methods for fabrication of phase masks in PTR glass. A method for relatively straightforward and inexpensive fabrication of phase masks with the aid of a Digital Micromirror Device is presented. This method enabled to produce phase masks containing complex greyscale phase distributions for generation of vortex (helical) beams. A phase mask can be holographically encoded into a transmission Bragg grating where a holographic phase mask (HPM) is formed. HPM has an advantage over a regular phase mask of being capable of multi-wavelength operation. All optical elements recorded in PTR glass preserve the advantages peculiar to VBGs recorded in PTR glass such as stability to heating and illumination with high-power laser beams.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-7517
Date01 January 2019
CreatorsKompan, Fedor
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.002 seconds