Return to search

Characterisation of Novel Carbonaceous Materials Synthesised Using Plasmas

Novel carbon materials such as carbon onions, nanotubes and amorphous carbon (a-C) are technologically important due to their useful properties. Normally synthesised using plasmas, their growth mechanisms are not yet fully understood. For example, the growth mechanism of the high density phase of a-C, tetrahedral amorphous carbon (ta-C), has been a subject of debate ever since its discovery. The growth mechanism of carbon nanostructures such as carbon onions and nanotubes is also not well known. The aim of this thesis is two-fold. Firstly, to provide insight into the growth of carbon films, in particular, the driving force behind the formation of diamond-like bonding in a-C which leads to ta-C. Secondly, to investigate the growth of carbon onions and other sp2 bonded carbon nanostructures such as nanotubes. To achieve the first aim, carbon thin films were deposited using cathodic arc deposition at a range of ion energies, substrate temperatures and Ar background gas pressures. These films were characterised using electron microscopy techniques to examine their microstructure, density and sp3 content. It was found that the formation of the ta-C is due to a stress-induced transition whereby a critical stress of 6.5±1.5 GPa is needed to change the phase of the film from highly sp2 to highly sp3. Within this region, a preferentially oriented phase with graphitic sheets aligned perpendicular to the substrate surface was found. By investigating the role of elevated temperatures, the ion energy-temperature

Identiferoai:union.ndltd.org:ADTP/256966
Date January 2009
CreatorsLau, Desmond, desmond.lau@rmit.edu.au
PublisherRMIT University. Applied Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Desmond Lau

Page generated in 0.0017 seconds