Return to search

Synthesis Strategies and a Study of Properties of Narrow and Wide Band Gap Nanowires

Various techniques to synthesize nanowires and nanotubes as a function of growth temperature and time were investigated. These include growth of nanowires by a chemical vapor deposition (CVD) system using vapor-liquid-solid (VLS) growth mechanism and electro-chemical synthesis of nanowires and nanotubes. Narrow band gap InSb Eg = 0.17 eV at room temp) nanowires were successively synthesized. Using a phase diagram, the transition of the nanowire from metallic- semiconducting- semi-metallic phase was investigated. A thermodynamic model is developed to show that the occurrence of native defects in InSb nanowires influenced by the nanowire growth kinetics and thermodynamics of defect formation. Wide band gap ZnO (Eg = 3.34 eV) and In2O3 (3.7 eV) were also synthesized. ZnO nanowires and nanotubes were successfully doped with a transition metal Fe, making it a Dilute Magnetic Semiconductor of great technological relevance. Structural and electronic characterizations of nanowires were studied for different semiconducting, metallic and semi-metallic nanowires. Electron transport measurements were used to estimate intrinsic material parameters like carrier concentration and mobility. An efficient gas sensing device using a single In2O3 nanowire was studied and which showed sensitivity to reducing gas like NH3 and oxidizing gas like O2 gas at room temperature. The efficiency of the gas sensing device was found to be sensitive to the nature of contacts as well as the presence of surface states on the nanowire.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc499984
Date05 1900
CreatorsSapkota, Gopal
ContributorsPhilipose, Usha, Weathers, Duncan, Neogi, Arup, Littler, Chris
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Sapkota, Gopal, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0018 seconds