Continuously throughout the process of developing Engine Control Units (ECU), the ECU and its control functions need to be dimensioned and tested for the engine itself. Since interaction between an ECU and a physical engine is both expensive and inflexible, software models of the engine are often used instead. One such test system, where an ECU interacts with software models, is called Hardware-in-the-Loop (HiL). This thesis describes a model constructed to facilitate implementation on a HiL testbed. The model, derived in Matlab/Simulink, is a Cylinder-by-Cylinder Engine Model (CCEM) reconstructing the angle synchronous torque of a diesel engine. To validate the model, it has been parameterised for the DaimlerChrysler engine OM646, a straight turbocharged four cylinder diesel engine, and tested towards measured data from a Mercedes-Benz C220 test vehicle. Due to hardware related problems, validation could only be performed for low engine speeds where the model shows good results. Future work around this theme ought to include further validation of the model as well as implementation on HiL.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-2556 |
Date | January 2004 |
Creators | Ramstedt, Magnus |
Publisher | Linköpings universitet, Institutionen för systemteknik, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | LiTH-ISY-Ex, ; 3480 |
Page generated in 0.0021 seconds