Return to search

A performance study on dynamic load balancing algorithms.

by Sau-ming Lau. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 131-134). / Abstract --- p.i / Acknowledgement --- p.iii / List of Tables --- p.viii / List of Figures --- p.x / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Basic Concepts and Related Work --- p.9 / Chapter 2.1 --- Components of Dynamic Load Balancing Algorithms --- p.10 / Chapter 2.2 --- Classification of Load Balancing Algorithms --- p.11 / Chapter 2.2.1 --- Casavant and Kuhl's Taxonomy --- p.12 / Chapter 3 --- System Model and Assumptions --- p.19 / Chapter 3.1 --- The System Model and Assumptions --- p.19 / Chapter 3.2 --- Survey on Cost Models --- p.21 / Chapter 3.2.1 --- "Eager, Lazowska, and Zahorjan's Model" --- p.22 / Chapter 3.2.2 --- "Shivaratri, Krueger, and Singhal's Model" --- p.23 / Chapter 3.3 --- Our Cost Model --- p.24 / Chapter 3.3.1 --- Design Philosophy --- p.24 / Chapter 3.3.2 --- Polling Query Cost Model --- p.25 / Chapter 3.3.3 --- Load State Broadcasting Cost Model --- p.26 / Chapter 3.3.4 --- Task Assignment Cost Model --- p.27 / Chapter 3.3.5 --- Task Migration Cost Model --- p.28 / Chapter 3.3.6 --- Execution Priority --- p.29 / Chapter 3.3.7 --- Simulation Parameter Values --- p.31 / Chapter 3.4 --- Performance Metrics --- p.33 / Chapter 4 --- A Performance Study on Load Information Dissemination Strategies --- p.36 / Chapter 4.1 --- Algorithm Descriptions --- p.37 / Chapter 4.1.1 --- Transfer Policy --- p.37 / Chapter 4.1.2 --- Information Policy --- p.40 / Chapter 4.1.3 --- Location Policy --- p.40 / Chapter 4.1.4 --- Categorization of the Algorithms --- p.43 / Chapter 4.2 --- Simulations and Analysis of Results --- p.43 / Chapter 4.2.1 --- Performance Comparisons --- p.44 / Chapter 4.2.2 --- Effect of Imbalance Factor on AWLT Algorithms --- p.49 / Chapter 4.2.3 --- Comparison of Average Performance --- p.52 / Chapter 4.2.4 --- Raw Simulation Results --- p.54 / Chapter 4.3 --- Discussions --- p.55 / Chapter 5 --- Resolving Processor Thrashing with Batch Assignment --- p.56 / Chapter 5.1 --- The GR.batch Algorithm --- p.57 / Chapter 5.1.1 --- The Guarantee and Reservation Protocol --- p.57 / Chapter 5.1.2 --- The Location Policy --- p.58 / Chapter 5.1.3 --- Batch Size Determination --- p.60 / Chapter 5.1.4 --- The Complete GR.batch Description --- p.62 / Chapter 5.2 --- Additional Performance Metrics --- p.66 / Chapter 5.3 --- Simulations and Analysis of Results --- p.67 / Chapter 5.4 --- Discussions --- p.73 / Chapter 6 --- Applying Batch Assignment to Systems with Bursty Task Arrival Patterns --- p.75 / Chapter 6.1 --- Bursty Workload Pattern Characterization Model --- p.76 / Chapter 6.2 --- Algorithm Descriptions --- p.77 / Chapter 6.2.1 --- The GR.batch Algorithm --- p.77 / Chapter 6.2.2 --- The SK .single Algorithm --- p.77 / Chapter 6.2.3 --- Summary of Algorithm Properties --- p.77 / Chapter 6.3 --- Analysis of Simulation Results --- p.77 / Chapter 6.3.1 --- Performance Comparison --- p.79 / Chapter 6.3.2 --- Time Trace --- p.80 / Chapter 6.4 --- Discussions --- p.80 / Chapter 7 --- A Preliminary Study on Task Assignment Augmented with Migration --- p.87 / Chapter 7.1 --- Algorithm Descriptions --- p.87 / Chapter 7.1.1 --- Information Policy --- p.88 / Chapter 7.1.2 --- Location Policy --- p.88 / Chapter 7.1.3 --- Transfer Policy --- p.88 / Chapter 7.1.4 --- The Three Load Balancing Algorithms --- p.89 / Chapter 7.2 --- Simulations and Analysis of Results --- p.90 / Chapter 7.2.1 --- Even Task Service Time --- p.90 / Chapter 7.2.2 --- Uneven Task Service Time --- p.94 / Chapter 7.3 --- Discussions --- p.99 / Chapter 8 --- Assignment Augmented with Migration Revisited --- p.100 / Chapter 8.1 --- Algorithm Descriptions --- p.100 / Chapter 8.1.1 --- The GR.BATCH.A Algorithm --- p.101 / Chapter 8.1.2 --- The SK.SINGLE.AM Algorithm --- p.101 / Chapter 8.1.3 --- Summary of Algorithm Properties --- p.101 / Chapter 8.2 --- Simulations and Analysis of Results --- p.101 / Chapter 8.2.1 --- Performance Comparisons --- p.102 / Chapter 8.2.2 --- Effect of Workload Imbalance --- p.105 / Chapter 8.3 --- Discussions --- p.106 / Chapter 9 --- Applying Batch Transfer to Heterogeneous Systems with Many Task Classes --- p.108 / Chapter 9.1 --- Heterogeneous System Model --- p.109 / Chapter 9.1.1 --- Processing Node Specification --- p.110 / Chapter 9.1.2 --- Task Type Specification --- p.111 / Chapter 9.1.3 --- Workload State Measurement --- p.112 / Chapter 9.1.4 --- Task Selection Candidates --- p.113 / Chapter 9.2 --- Algorithm Descriptions --- p.115 / Chapter 9.2.1 --- First Category ´ؤ The Sk .single Variations --- p.115 / Chapter 9.2.2 --- Second Category ´ؤ The GR. batch Variation Modeled with SSP --- p.117 / Chapter 9.3 --- Analysis of Simulation Results --- p.123 / Chapter 10 --- Conclusions and Future Work --- p.127 / Bibliography --- p.131 / Appendix A System Model Notations and Definitions --- p.131 / Appendix A.1 Processing Node Model --- p.131 / Appendix A.2 Cost Models --- p.132 / Appendix A.3 Load Measurement --- p.134 / Appendix A.4 Batch Size Determination Rules --- p.135 / Appendix A.5 Bursty Arrivals Modeling --- p.135 / Appendix A.6 Heterogeneous Systems Modeling --- p.135 / Appendix B Shivaratri and Krueger's Location Policy --- p.137

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_320606
Date January 1995
ContributorsLau, Sau-ming., Chinese University of Hong Kong Graduate School. Division of Computer Science.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xii, 142 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.002 seconds