The purpose of this report is to investigate the processing of tracking data for acoustic targets. The programs developed for two- and three- dimensional space calculate the target's position via "hyperbolic-fix" navigation (geometric) considerations using the Newton-Raphson algorithm. The computer programs and the tracking solution approach contained herein is based on knowledge of only the sensors' locations and the relative time-difference at which a target's referenced, singular, acoustic pressure wavefronts are received at the sensors. Omnidirectional sensors are found to be sufficient for the two-dimensional space tracking problem. However, it is found that the three-space problem required usage of directional frequency and ranging (DIFAR) sensors. Line printer plots are provided for the target position solutions; also; tabular track position solutions are provided.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:rtd-1554 |
Date | 01 April 1981 |
Creators | Ford, George H. |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Retrospective Theses and Dissertations |
Rights | Public Domain |
Page generated in 0.0021 seconds