Return to search

Charge Transport Modulation and Optical Absorption Switching in Organic Electronic Devices

Organic electronics has evolved into a well-established research field thanks to major progresses in material sciences during recent decades. More attention was paid to this research field when “the discovery and development of conductive polymers” was awarded the Nobel Prize in Chemistry in 2000. Electronic devices that rely on tailor-made material functionalities, the ability of solution processing and low-cost manufacturing on flexible substrates by traditional printing techniques are among the key features in organic electronics. The common theme while exploring organic electronics, and the focus of this thesis, is that (semi-)conducting polymers serve as active materials to define the principle of operation in devices. This thesis reviews two kinds of organic electronic devices. The first part describes electrochemical devices based on conducting polymers. Active matrix addressed displays that are printed on flexible substrates have been obtained by arranging electrochemical smart pixels, based on the combination of electrochemical transistors and electrochromic display cells, into cross-point matrices. The resulting polymer-based active-matrix displays are operated at low voltages and the same active material is used in the electrochemical transistors as well as in the electrochromic display cells, simply by employing the opto-electronic properties of the material. In addition to this first part, a switchable optical polarizer based on electrochromism in a stretch-aligned conducting polymer is described. The second part reports switchable charge traps in polymer diodes. Here, a device based on a solid-state blend of a conjugated polymer and a photochromic molecule has been demonstrated. The solid state blend, sandwiched between two electrodes, provide a polymer diode that allows reversible current modulation between two different charge transport mechanisms via externally triggered switching of the charge trap density.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-10271
Date January 2007
CreatorsAndersson, Peter
PublisherLinköpings universitet, Institutionen för teknik och naturvetenskap, Linköpings universitet, Tekniska högskolan, Institutionen för teknik och naturvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1147

Page generated in 0.0019 seconds