Doctor of Philosophy / Over 1.9 million new cases of cancer will pop up just this year alone. The prevalence of cancer, however, has not been met with the same magnitude of effective treatments, resulting in over 600,000 deaths in the United States. Before current treatments can be improved and new treatments can be developed, it is critical that we increase our understanding of what drives cancer to be so aggressive and maintain a fighting chance within the body despite our complex immune systems. The severity of cancer is not just a product of the cancer cell itself, but rather the components that make up the cell that define and drive metastatic behaviors and drug resistance. In order to improve diagnoses, prognoses, and treatment planning, the intracellular drivers of the disease must be better understood. Cells, electrical circuits in nature, reflect unique electrical properties dictated by their biophysical composition. These electrical properties can be revealed and exploited to characterize and treat contributors to disease progression. Using electric fields applied in several modalities, this work explores the electrical entities of malignant cell types towards improving in vitro treatment planning and developing a treatment modality cognizant of subcellular drivers. This dissertation details the use of dielectrophoresis and electroporation to detect and treat intracellular changes associated with poor prognosis.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/117269 |
Date | 21 December 2023 |
Creators | Duncan, Josie Lee |
Contributors | Mechanical Engineering, Davalos, Rafael V., Kale, Sohan, Behkam, Bahareh, Paul, Mark R. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds