Capillary electrophoresis often uses complexing agents since the interaction between the analyte and the complexing agent can result in achieving or improving the separation. Examples of such methods can be electrokinetic chromatography or affinity capillary electrophoresis (ACE). ACE is used to determine the complexing parameters. In case of chiral separation, this issue gets complicated, since the parameters of the two analytes (enantiomers) are not completely independent to one another. Therefore, a procedure has been proposed in this thesis, that should always be used to evaluate the complexing parameters of two enantiomers. Statistical evaluation of these parameters was assessed as well. This work also proposes a method that allows to determine the relative migration order of two enantiomers in two different complexing separation systems. The mathematical description of electrophoresis is based on continuity equations, that are inherently nonlinear. However, these equations can be linearized to obtain an approximate analytical solution. There was recently presented a generalized model, that enables inclusion of complete complexing equilibria in the theoretical description of electromigration. Thus, various phenomena, including nonlinear ones, associated with complexation can be predicted. This...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:405173 |
Date | January 2019 |
Creators | Dovhunová, Magda |
Contributors | Dubský, Pavel, Koval, Dušan, Ševčík, Juraj |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds