Return to search

Factors affecting the mechanical and geometrical properties of electrostatically flocked pure chitosan fiber scaffolds

The field of articular cartilage tissue engineering has developed rapidly, and chitosan has become a promising material for scaffold fabrication. For this paper, wet-spun biocompatible chitosan filament yarns were converted into short flock fibers and subsequently electrostatically flocked onto a chitosan substrate, resulting in a pure, highly open, porous, and biodegradable chitosan scaffold. Analyzing the wet-spinning of chitosan revealed its advantages and disadvantages with respect to the fabrication of the fiber-based chitosan scaffolds. The scaffolds were prepared using varying processing parameters and were analyzed in regards to their geometrical and mechanical properties. It was found that the pore sizes were adjustable between 65 and 310 µm, and the compressive strength was in the range 13–57 kPa.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35536
Date05 November 2019
CreatorsTonndorf, Robert, Gossla, Elke, Kocaman, Recep Türkay, Kirsten, Martin, Hund, Rolf-Dieter, Hoffmann, Gerald, Aibibu, Dilbar, Gelinsky, Michael, Cherif, Chokri
PublisherSage
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1746-7748, 10.1177/0040517517715083

Page generated in 0.0022 seconds