Return to search

Fenômenos de transporte em líquidos iônicos / Transport phenomena in ionic liquids

A procura por fontes de energia confiáveis para motores elétricos, levou a grande esforços de síntese de novos eletrólitos para uso em baterias de íon-Li, de modo a aliar eficiência e segurança. Líquidos iônicos têm sido largamente estudados para este propósito. Misturas do sal Li(CF3SO2)2N, LiTf2N, no líquido iônico (LI) formado pelo cátion 1-butil-2,3-dimetilimidazólio, BMMI, e o ânion (CF3SO2)2N-, bis(trifluorometanosulfonil)imideto, Tf2N, foram preparadas em diferentes concentrações. A adição do sal de lítio a este liquido iônico diminuiu a mobilidade de todas as espécies, especialmente o Li+. A condutividade estimada usando os dados de difusão (NMRPGSE), os dados da espectroscopia Raman e as simulações por Dinâmica Molecular sugerem a formação de agregados compostos por ânions Tf2N em torno do Li+, com os oxigênios do Tf2N direcionados para o cátion Li+. Estes agregados aumentam conforme aumenta a concentração de LiTf2N, contribuindo para a diminuição da condutividade. Para contornar este obstáculo, foram sintetizados líquidos iônicos contendo um átomo de oxigênio na estrutura do cátion, de modo a promover a competição com os oxigênios do Tf2N pelo cátion Li+, prevenindo Li+ de formar agregados de grande massa e melhorando sua difusividade. Os cations escolhidos foram o 1,2-dimetil-imidazólio e o N-metilmorfolino. Estes LI´s serão representados por [Et2OMMI][Tf2N] e [Et2OMor][Tf2N], respectivamente. Os resultados mostraram que [Et2OMMI][Tf2N] tem uma menor janela eletroquímica (3,8V) que [BMMI][Tf2N] (4,6V), mas o potencial de redução para ambos é igual, o que os torna resistentes à redução pelo lítio metálico. Estes dois LI´s tem quase a mesma densidade e a viscosidade de [Et2OMMI][Tf2N] é 20% menor que a de [BMMI][Tf2N]. Sendo menos viscoso, é esperado que [Et2OMMI][Tf2N] tenha uma maior condutividade. De fato, sua condutividade é 40% maior que a de [BMMI][Tf2N], o que sugere que o grupo éter adiciona alguma modificação estrutural ao sistema, mostrando que neste caso, as mudanças no transporte de carga não decorrem apenas em função da fluidez. Coeficientes de difusão de [Et2OMMI][Tf2N] são maiores que aqueles de [Et2OMor][Tf2N], mas um pouco menores que aqueles de [BMMI][Tf2N]. Também foram estudadas as mudanças nas propriedades físico-químicas em [BMMI][Tf2N] decorrentes da adição do gás SO2. Todas as propriedades de transporte tiveram aumento e uma diminuição na dinâmica de formação de pares iônicos foi sugerida pelos dados experimentais / The searching for reliable power sources for electrical engines has lead to great efforts in order to synthesize new electrolytes to be used in Li-ion batteries in order to make them powerful and safe. Ionic liquids have been widely studied for this purpose. Lithium salt solutions of Li(CF3SO2)2N, LiTf2N, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)2N-, bis(trifluoromethanesulfonyl)imide anion, Tf2N, were prepared in different concentrations. The addition of a lithium salt to this RTIL decreases the mobility of all species, especially Li+. Estimated conductivities (NMR-PGSE), Raman spectroscopy and Molecular Dynamics Simulation data suggest the formation of aggregates formed by [Tf2N] anions around Li+, with [Tf2N]´s oxygen atoms pointing toward Li+. These aggregates increase as LiTf2N content is increased, thus contributing to diminish conductivity. To overcome this obstacle, it was synthesized ionic liquids with ether-function-containing cations, so, oxygen atom from the ether group could compete for Li+ against the oxygen atoms from [Tf2N], preventing Li+ to form high mass aggregates improving the Li+ diffusion process. The chosen cations were the 1,2-dimethyl-imidazolium and N-methylmorpholine. RTILs were represented by [Et2OMMI][Tf2N] and [Et2OMor][Tf2N], respectively. Results show that [Et2OMMI][Tf2N] has a lower electrochemical window (3,8V) than [BMMI][Tf2N] (4,6V), but their reduction potential is equal, which makes them resistant to reduction by metallic lithium. These two RTIL´s have almost the same density and the viscosity of [Et2OMMI][Tf2N] is 20% lower than that of [BMMI][Tf2N]. Being less viscous, it is expected that [Et2OMMI][Tf2N] had a higher conductivity. It has in fact a conductivity 40% higher than [BMMI][Tf2N], which suggests that the ether chain add some structural modification to the system, showing that in this case, changes in charge transport is not only a function of the fluidity. Diffusion coefficients of [Et2OMMI][Tf2N] are higher than those of [Et2OMor][Tf2N], but a little bit lower than those of [BMMI][Tf2N]. It was also addressed the physical property changes in [BMMI][Tf2N] with the increasing addition of SO2. All the transport properties have improved and a decrease in ionic pair formation was suggested by experiment data

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-08112010-090519
Date03 September 2010
CreatorsMonteiro, Marcelo José
ContributorsRibeiro, Mauro Carlos Costa, Torresi, Roberto Manuel
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0024 seconds