Return to search

Fatigue behavior of ceramic matrix composites at elevated temperatures under cyclic loading

To achieve satisfactory levels of strength, fracture toughness, and reliability for man-rated systems such as jet engines, fiber reinforced ceramic matrix composites are needed. An elevated temperature axial testing system is developed to investigate and characterize fatigue behavior of Nicalon fiber reinforced enhanced silicon carbide matrix. composites at 1800 of under fully reversed cyclic loading. Notch effect on quasi-static tensile response is also considered. Quasi-static and fatigue damage mechanisms and failure modes are examined using various specimen geometries, load levels, fatigue ratios, and laminates stacking sequences by employing a number of NDE techniques. Issues such as damage tolerance and durability are addressed by conducting interrupted fatigue tests at various stages of life for different load levels. Results are compared to the predictions of remaining strength and life, obtained using a performance simulation code. Initial results indicate existence of a threshold stress value which limits the use of the material system. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/38074
Date06 June 2008
CreatorsElahi, Mehran
ContributorsEngineering Mechanics, Reifsnider, Kenneth L., Duke, John C. Jr., Mook, Dean T., Kriz, Ronald D., Johnson, Eric R.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation, Text
Formatxii, 209 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 36762639, LD5655.V856_1996.E434.pdf

Page generated in 0.0024 seconds