This thesis provides insights into the creation of a model for predicting odds in the Premier League. It illustrates how the ELO system and historical odds, in combination with Monte Carlo simulations, can be implemented through logistic regression to predict odds in an unbiased way. The findings are that the model performs generally well, but significantly worse at the beginning and end of the Premier League seasons. For further improvements, it is most likely necessary to factor in variables not available in the current model. Such factors could for example be incentives, injuries, or changes in the squad, all not being accounted for by the model in this case. / Detta examensarbete ger insikter om skapandet av en modell för att förutsäga oddsen i Premier League. Den visar hur ELO-systemet och historiska odds, i kombination med Monte Carlo-simuleringar, kan implementeras genom logistisk regression för att förutsäga oddsen på ett opartiskt sätt. Resultaten visar att modellen generellt sett fungerar bra, men betydligt sämre i början och slutet av Premier League-säsongerna. För ytterligare förbättringar är det troligtvis nödvändigt att ta hänsyn till variabler som inte är tillgängliga i den nuvarande modellen. Sådana faktorer kan till exempel vara incitament, skador eller förändringar i truppen, som alla inte tas hänsyn till i modellen i detta fall.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-341852 |
Date | January 2023 |
Creators | Thegelström, Claudio |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2023-221 |
Page generated in 0.002 seconds