Return to search

Inferência em modelos de mistura via algoritmo EM estocástico modificado / Inference on mixture models via modified stochastic EM algorithm

Submitted by Ronildo Prado (ronisp@ufscar.br) on 2017-08-22T14:32:30Z
No. of bitstreams: 1
DissRCA.pdf: 1727058 bytes, checksum: 78d5444e767bf066e768b88a3a9ab535 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-22T14:32:38Z (GMT) No. of bitstreams: 1
DissRCA.pdf: 1727058 bytes, checksum: 78d5444e767bf066e768b88a3a9ab535 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-22T14:32:44Z (GMT) No. of bitstreams: 1
DissRCA.pdf: 1727058 bytes, checksum: 78d5444e767bf066e768b88a3a9ab535 (MD5) / Made available in DSpace on 2017-08-22T14:32:50Z (GMT). No. of bitstreams: 1
DissRCA.pdf: 1727058 bytes, checksum: 78d5444e767bf066e768b88a3a9ab535 (MD5)
Previous issue date: 2017-06-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / We present the topics and theory of Mixture Models in a context of maximum likelihood and Bayesian inferece. We approach clustering methods in both contexts, with emphasis on the stochastic EM algorithm and the Dirichlet Process Mixture Model. We propose a new method, a modified stochastic EM algorithm, which can be used to estimate the parameters of a mixture model and the number of components. / Apresentamos o tópico e a teoria de Modelos de Mistura de Distribuições, revendo aspectos teóricos e interpretações de tais misturas. Desenvolvemos a teoria dos modelos nos contextos de máxima verossimilhança e de inferência bayesiana. Abordamos métodos de agrupamento já existentes em ambos os contextos, com ênfase em dois métodos, o algoritmo EM estocástico no contexto de máxima verossimilhança e o Modelo de Mistura com Processos de Dirichlet no contexto bayesiano. Propomos um novo método, uma modificação do algoritmo EM Estocástico, que pode ser utilizado para estimar os parâmetros de uma mistura de componentes enquanto permite soluções com número distinto de grupos.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/9047
Date02 June 2017
CreatorsAssis, Raul Caram de
ContributorsMilan, Luis Aparecido
PublisherUniversidade Federal de São Carlos, Câmpus São Carlos, Programa de Pós-graduação em Estatística UFSCar/USP, UFSCar
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds