Dans un environnement non contrôlé, un robot doit pouvoir interagir avec les personnes d’une façon autonome. Cette autonomie doit également inclure une interaction grâce à la voix humaine. Lorsque l’interaction s’effectue à une distance de quelques mètres, des phénomènes tels que la réverbération et la présence de bruit ambiant doivent être pris en considération pour effectuer efficacement des tâches comme la reconnaissance de la parole ou de locuteur. En ce sens, le robot doit être en mesure de localiser, suivre et séparer les sources sonores présentes dans son environnement.
L’augmentation récente de la puissance de calcul des processeurs et la diminution de leur consommation énergétique permettent dorénavant d’intégrer ces systèmes d’audition articielle sur des systèmes embarqués en temps réel. L’audition robotique est un domaine relativement jeune qui compte deux principales librairies d’audition artificielle : ManyEars et HARK. Jusqu’à présent, le nombre de microphones se limite généralement à huit, en raison de l’augmentation rapide de charge de calculs lorsque des microphones supplémentaires sont ajoutés. De plus, il est parfois difficile d’utiliser ces librairies avec des robots possédant des géométries variées puisqu’il est nécessaire de les calibrer manuellement.
Cette thèse présente la librairie ODAS qui apporte des solutions à ces difficultés. Afin d’effectuer une localisation et une séparation plus robuste aux matrices de microphones fermées, ODAS introduit un modèle de directivité pour chaque microphone. Une recherche hiérarchique dans l’espace permet également de réduire la quantité de calculs nécessaires. De plus, une mesure de l’incertitude du délai d’arrivée du son est introduite pour ajuster automatiquement plusieurs paramètres et ainsi éviter une calibration manuelle du système.
ODAS propose également un nouveau module de suivi de sources sonores qui emploie des filtres de Kalman plutôt que des filtres particulaires.
Les résultats démontrent que les méthodes proposées réduisent la quantité de fausses détections durant la localisation, améliorent la robustesse du suivi pour des sources sonores multiples et augmentent la qualité de la séparation de 2.7 dB dans le cas d’un formateur de faisceau à variance minimale. La quantité de calculs requis diminue par un facteur allant jusqu’à 4 pour la localisation et jusqu’à 30 pour le suivi par rapport à la librairie ManyEars. Le module de séparation des sources sonores exploite plus efficacement la géométrie de la matrice de microphones, sans qu’il soit nécessaire de mesurer et calibrer manuellement le
système.
Avec les performances observées, la librairie ODAS ouvre aussi la porte à des applications dans le domaine de la détection des drones par le bruit, la localisation de bruits extérieurs pour une navigation plus efficace pour les véhicules autonomes, des assistants main-libre à domicile et l’intégration dans des aides auditives.
Identifer | oai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/11621 |
Date | January 2017 |
Creators | Grondin, François |
Contributors | Michaud, François |
Publisher | Université de Sherbrooke |
Source Sets | Université de Sherbrooke |
Language | French, English |
Detected Language | French |
Type | Thèse |
Rights | © François Grondin, Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 2.5 Canada, http://creativecommons.org/licenses/by-nc-sa/2.5/ca/ |
Page generated in 0.002 seconds