The scalability of QUIC-TCP was examined by expanding previous
developmental 11-node, 4-flow topology to over 30 nodes with 11 flows to validate
QUIC-TCP for larger networks. The topology was simulated using ns-2 network
simulator with the same ns-2 module of FAST-TCP modified to produce QUIC-TCP
agent that the original development used. A symmetrical topology and a random
topology were examined. Fairness, aggregate throughput and the object of the utility
function were used as validation criteria. It was shown through simulation that QUICTCP
optimized the utility function and demonstrated a good balance between aggregate
throughput and fairness; therefore QUIC-TCP is indeed scalable to larger networks. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013.
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_13052 |
Contributors | Boughen, Brian (author), Wang, Xin (Thesis advisor), College of Engineering and Computer Science (Degree grantor), Department of Computer and Electrical Engineering and Computer Science |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 62 p., Online Resource |
Rights | All rights reserved by the source institution, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds