Return to search

Combining empirical mode decomposition with neural networks for the prediction of exchange rates / Jacques Mouton

The foreign exchange market is one of the largest and most active financial markets with enormous daily trading volumes. Exchange rates are influenced by the interactions of a large number of agents, each operating with different intentions and on different time scales. This gives rise to nonlinear and non-stationary behaviour which complicates modelling. This research proposes a neural network based model trained on data filtered with a novel Empirical Mode Decomposition (EMD) filtering method for the forecasting of exchange rates.
One minor and two major exchange rates are evaluated in this study. Firstly the ideal prediction horizons for trading are calculated for each of the exchange rates. The data is filtered according to this ideal prediction horizon using the EMD-filter. This EMD-filter dynamically filters the data based on the apparent number of intrinsic modes in the signal that can contribute towards prediction over the selected horizon. The filter is employed to filter out high frequency noise and components that would not contribute to the prediction of the exchange rate at the chosen timescale. This results in a clearer signal that still includes nonlinear behaviour. An artificial neural network predictor is trained on the filtered data using different sampling rates that are compatible with the cut-off frequency. The neural network is able to capture the nonlinear relationships between historic and future filtered data with greater certainty compared to a neural network trained on unfiltered data.
Results show that the neural network trained on EMD-filtered data is significantly more accurate at prediction of exchange rates compared to the benchmark models of a neural network trained on unfiltered data and a random walk model for all the exchange rates. The EMD-filtered neural network’s predicted returns for the higher sample rates show higher correlations with the actual returns, and significant profits can be made when applying a trading strategy based on the predictions. Lower sample rates that just marginally satisfy the Nyquist criterion perform comparably with the neural network trained on unfiltered data; this may indicate that some aliasing occurs for these sampling rates as the EMD low-pass filter has a gradual cut-off, leaving some high frequency noise within the signal.
The proposed model of the neural network trained on EMD-filtered data was able to uncover systematic relationships between the filtered inputs and actual outputs. The model is able to deliver profitable average monthly returns for most of the tested sampling rates and forecast horizons of the different exchange rates. This provides evidence that systematic predictable behaviour is present within exchange rates, and that this systematic behaviour can be modelled if it is properly separated from high frequency noise. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nwu/oai:dspace.nwu.ac.za:10394/15448
Date January 2014
CreatorsMouton, Jacques
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds