Return to search

Bio-Inspired Materials and Micro/Nanostructures Enabled by Peptides and Proteins

The development of a general approach for non-destructive chemical and biological functionalization of materials could expand opportunities for both fundamental studies and creating various device platforms. Phage display has emerged as a powerful method for selecting peptides that possess enhanced selectivity and binding affinity toward a variety of targets. In this study, a powerful yet benign approach for identifying binding motifs to materials like (Poly) dimethylsiloxane, epoxy, and (Poly) ethylenetetraphthalate and peptide nanotubes has been demonstrated via comprehensively screened phage-displayed peptides. Further, along with the development of microstructures, micropatterns and micro-molecular self-assembly, recognition with phage-displayed peptides can be specifically localized in these microstructures.
In addition, the development of a facile approach for fabricating a library of precisely positioned nanostructures and microfluidic systems based on mammalian hair offers exciting opportunities in fundamental research and practical applications. The current top-down and bottom-up nanofabrication methods have been restricted in accessibility in standard labs due to their high cost and complexity. Novel fabrication methods utilizing biomimetic materials and natural proteins for large-scale nanopatterning with hierarchical assembly of functional materials have been reported. It is anticipated that these results could open up exciting opportunities in the use of peptide-recognized materials in fundamental biochemical recognition studies, as well as in applications ranging from analytical storage devices, hybrid materials, sensors, surface and interface, to cell biology.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-5256
Date01 May 2015
CreatorsSwaminathan, Swathi
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0023 seconds