[ES] El transporte por carretera es uno de los sectores que más contribuyen al cambio climático. Por ello, muchos gobernantes a nivel mundial están promoviendo una transición hacia medios de transporte sostenibles que no dependan de combustibles fósiles. Sin embargo, debido a la falta de competitividad de las alternativas actuales, no parece factible, en el corto plazo, reducir significativamente el uso de los motores de combustión. Así pues, es probable que los motores de gasolina (MEP) mantengan su papel dominante en el sector automotriz durante los próximos años. De ahí que sea crucial seguir mejorando estos motores a fin de reducir su huella de carbono.
Actualmente, es habitual fabricar motores MEP de pequeña cilindrada ("downsizing") con sistemas de sobrealimentación e inyección directa, a fin de reducir el consumo de combustible y las emisiones de CO2. Además, en la última década, se ha demostrado que la recirculación de gases de escape (EGR) puede mejorar la eficiencia de los motores MEP entre un 3 % y un 6 %, dependiendo del grado de carga. Como desventaja, para poder extraer todo el potencial de la estrategia EGR, es necesario trabajar con altas tasas de EGR, lo que puede causar ciertos problemas en condiciones transitorias. En esta tesis, se ha demostrado que el uso de altas tasas de EGR a través de sistemas de baja presión en motores MEP turboalimentados puede ralentizar la respuesta del motor y provocar fallos de encendido durante maniobras de aceleración y desaceleración, respectivamente.
Con la entrada en vigor de nuevos procedimientos de homologación de vehículos, como el WLTP (Worldwide harmonized Light vehicle Test Procedure), donde las operaciones transitorias tienen un peso importante, los fabricantes buscan que sus motores consuman y emitan menos en un amplio rango de condiciones de operación, tanto estacionarias como transitorias. Por ello, el objetivo principal de esta tesis es analizar y optimizar el funcionamiento, en condiciones transitorias, de los motores MEP que operan con altas tasas de EGR. Para ello, se ha empleado un motor de gasolina (Euro 6) de 1.3l turboalimentado con inyección directa, distribución variable y turbina de geometría variable. Se ha desarrollado un modelo unidimensional (1D) del motor para el estudio de la fluidodinámica y los fenómenos de transporte en su interior. Por otro lado, se ha ensayado el motor para calibrar el modelo 1D y evaluar aspectos difícilmente predecibles con dicho modelo, como las emisiones contaminantes y la estabilidad de la combustión.
Previo al estudio en condiciones transitorias, el motor fue calibrado con EGR, y se realizaron simulaciones para determinar el consumo de un vehículo convencional y otro híbrido, ambos con EGR, durante un ciclo WLTP. Finalmente, se concluyó que ciertas estrategias orientadas a mejorar el proceso de renovación de la carga pueden resolver la problemática del uso del EGR en condiciones transitorias. Eso sí, implementar dichas estrategias conllevaría un aumento en complejidad y costes. / [CA] El transport per carretera és un dels sectors que més contribueixen al canvi climàtic. Per això, molts governants a nivell mundial estan promovent una transició cap a mitjans de transport sostenibles que no depenguen de combustibles fòssils. No obstant això, a causa de la falta de competitivitat de les alternatives actuals, no sembla factible, en el curt termini, reduir significativament l'ús dels motors de combustió. Així doncs, és probable que els motors de gasolina (MEP) mantinguen el seu paper dominant en el sector automotriu durant els pròxims anys. D'ací ve que siga crucial continuar millorant aquests motors a fi de reduir la seua petjada de carboni. Actualment, és habitual fabricar motors MEP de xicoteta cilindrada ("downsizing") amb sistemes de sobrealimentació i injecció directa, a fi de reduir el consum de combustible i les emissions de CO2. A més, en l'última dècada, s'ha demostrat que la recirculació de gasos d'escapament (EGR) pot millorar l'eficiència dels motors MEP entre un 3% i un 6%, depenent del grau de càrrega. Com a desavantatge, per a poder extraure tot el potencial de l'estratègia EGR, és necessari treballar amb altes taxes de EGR, la qual cosa pot causar uns certs problemes en condicions transitòries. En aquesta tesi, s'ha demostrat que l'ús d'altes taxes de EGR a través de sistemes de baixa pressió en motors MEP turboalimentats pot alentir la resposta del motor i provocar fallades d'encesa durant maniobres d'acceleració i desacceleració, respectivament. Amb l'entrada en vigor de nous procediments d'homologació de vehicles, com el WLTP (Worldwide harmonized Light vehicle Test Procedure), on les operacions transitòries tenen un pes important, els fabricants busquen que els seus motors consumisquen i emeten menys en un ampli rang de condicions d'operació, tant estacionàries com transitòries. Per això, l'objectiu principal d'aquesta tesi és analitzar i optimitzar el funcionament, en condicions transitòries, dels motors MEP que operen amb altes taxes de EGR. Per a això, s'ha emprat un motor de gasolina (Euro 6) de 1.3l turboalimentat amb injecció directa, distribució variable i turbina de geometria variable. S'ha desenvolupat un model unidimensional (1D) del motor per a l'estudi de la fluidodinàmica i els fenòmens de transport en el seu interior. D'altra banda, s'ha assajat el motor per a calibrar el model 1D i avaluar aspectes difícilment predictibles amb aquest model, com les emissions contaminants i l'estabilitat de la combustió. Previ a l'estudi en condicions transitòries, el motor va ser calibrat amb EGR, i es van realitzar simulacions per a determinar el consum d'un vehicle convencional i un altre híbrid, tots dos amb EGR, durant un cicle WLTP. Finalment, es va concloure que unes certes estratègies orientades a millorar el procés de renovació de la càrrega poden resoldre la problemàtica de l'ús del EGR en condicions transitòries. Això sí, implementar aquestes estratègies comportaria un augment en complexitat i costos. / [EN] Road transport is a major contributor to climate change. However, given the lack of competitiveness of fossil fuel-free alternatives, it does not seem possible to reduce the dependence on the internal combustion engine (ICE) as rapidly as planned by the authorities. Advanced gasoline engines will therefore hold a high market share in the automobile industry in the following years, at least during the next decade, either working in conventional or hybrid powertrains. Hence it is essential to keep improving these engines to reduce the negative impact of light-duty vehicles on the environment.
The most used strategy to reduce fuel consumption and CO2 emissions in current spark-ignition (SI) gasoline engines is downsizing combined with direct injection (DI). Besides, downsizing must go hand in hand with turbocharging to maintain peak power. It is also proven that exhaust gas recirculation (EGR) can improve fuel economy in SI engines by 3-6% at medium and high loads. As a disadvantage, extracting the full benefit from EGR requires operating with high recirculation rates (close to the EGR dilution limit), leading to some issues under transient conditions. In this thesis, it is demonstrated that high EGR operation through long-route systems in turbocharged engines can potentially originate combustion instabilities and poor engine response during load-decrease (tip-out) and load-increase (tip-in) maneuvers, respectively.
Transient operations are especially important for manufacturers since the implementation of the Worldwide harmonized Light vehicle Test Procedure (WLTP). The present thesis is therefore devoted to analyzing and optimizing the gasoline engine performance under high EGR conditions during relevant transient maneuvers. To this end, a Euro-6 1.3L turbocharged DI SI gasoline engine with a variable geometry turbine was employed. A 1D model of this ICE was developed to assess fluid dynamics and transport phenomena. Engine tests were also performed to validate the 1D model and evaluate torque response, combustion stability, and raw exhaust emissions.
Before addressing the study of transient maneuvers, the engine calibration with EGR was carried out, and 0D conventional and hybrid vehicle simulations were done to determine the EGR benefit in fuel economy under WLTP driving conditions. Finally, tip-in and tip-out results revealed that some air management strategies are effective in meeting the transient EGR challenges in SI engines, but at the expense of increased complexity and costs. / González Domínguez, D. (2023). Analysis and Optimization of the Transient Operation of Gasoline Turbocharged Direct Injection Engines Under High EGR Conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/193852
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/193852 |
Date | 05 June 2023 |
Creators | González Domínguez, David |
Contributors | Climent Puchades, Héctor, Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds