In a world that is increasingly relying on digital technologies, the ability to securely communicate and distribute information is of crucial importance. Cryptography plays a key role in this context and the research presented in this thesis focuses on developing cryptographic primitives whose properties address more closely the needs of users. We start by considering the notion of robustness in public-key encryption, a property which models the idea that a ciphertext should not decrypt to a valid mes- sage under two different keys. In contexts where anonymity is relevant, robustness is likely to be needed as well, since a user cannot tell from the ciphertext if it is intended for him or not. We develop and study new notions of robustness, relating them to one another and showing how to achieve them. We then consider the important issue of protecting users' privacy in broadcast encryption. Broadcast encryption (BE) is a cryptographic primitive designed to efficiently broadcast an encrypted message to a target set of users that can decrypt it. Its extensive real-life application to radio, television and web-casting renders BE an extremely interesting area. However, all the work so far has striven for efficiency, focusing in particular on solutions which achieve short ciphertexts, while very little attention has been given to anonymity. To address this issue, we formally define anonymous broadcast encryption, which guarantees recipient-anonymity, and we provide generic constructions to achieve it from public-key, identity-based and attribute-based encryption. Furthermore, we present techniques to improve the efficiency of our constructions. Finally, we develop a new primitive, called time-specific encryption (TSE), which allows us to include the important element of time in the encryption and decryption processes. In TSE, the sender is able to specify during what time interval a ciphertext can be decrypted by a receiver. This is a relevant property since information may become useless after a certain point, sensitive data may not be released before a particular time, or we may wish to enable access to information for only a limited period. We define security models for various flavours of TSE and provide efficient instantiations for all of them. These results represent our efforts in developing public-key encryption schemes with enhanced properties, whilst maintaining the delicate balance between security and efficiency.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:580630 |
Date | January 2012 |
Creators | Quaglia, Elizabeth |
Contributors | Paterson, Kenny |
Publisher | Royal Holloway, University of London |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://repository.royalholloway.ac.uk/items/5d2c96e9-a243-71ea-acd5-1dc78c707035/7/ |
Page generated in 0.0031 seconds