Return to search

Energieffektivisering av fabrik inom tillverkande industri : Utvärdering av åtgärdsförslag / Energy Efficiency of a Manufacturing Factory : Evaluation of Energy Efficiency Solutions

June 1st, 2014, the law on energy audits of large enterprises was introduces as a way of promoting energy efficiency and to help fulfil the demands from the EU energy efficiency directive. One company that this law applies to is Talent Plastics in Gothenburg. In 2017 an energy audit was conducted at the company by WSP in Karlstad. This audit has been used as a basis for this study. The purpose of this study has been to present solutions for reducing the energy use as Talent Plastics in Gothenburg. In this study, an energy balance for the facility has been modelled. This model has then been used in order to evaluate some of the different solutions presented in the previous energy audit as well as some new solutions that have been identified. The solutions that have been studied are: Heat recovery from the process cooling by installing a heating battery in ventilation systemsHeat recovery from the process cooling by pre-heating ventilation airUpdating old extruder machinesHeat recovery from the compressed air systemUsing outside air for the compressed air systemUpdate of the existing heat recovery system installed in the production ventilation system Based on the results presented in this report the system today is inefficient with a large need for heat whilst a lot of energy is cooled through process cooling. The energy balance presented showed a higher use of energy for heating of ventilation air compared to the results presented in the previous energy audit. This is a consequence of the assumptions made when conducting an energy audit. By underestimating the energy need for the heating of ventilation air, the potential energy savings from solutions including heat recovery in the ventilation systems has been underestimated. Out of the solutions investigated in this study, updating the heat recovery system in the ventilation system for production spaces resulted in the largest energy savings with savings of 192 MWh per year. The maximum energy savings using heat recovery from the process cooling were 202 MWh/year. This solution had a pay-off time of 0,7 years. The results showed that heat recovery from the compressed air system is not a suitable solution for the facility. When combining different solutions updating the existing heat recovery system installed in the production ventilation system combined with pre-heating and installation of a heating battery in the same ventilation system would result in energy savings of 323 MWh per year. This represents 14 % of the total energy use for the facility and savings of 226 thousand Swedish krona per year.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-85635
Date January 2021
CreatorsAbrahamsson, Linnéa
PublisherKarlstads universitet, Institutionen för ingenjörs- och kemivetenskaper (from 2013)
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds