Return to search

Stability Investigation of an Advanced Electrical Rail Vehicle : Investigation of the Effect of Nonlinearity Introduced by a Switching Model of an Advanced Electrical Rail Vehicle on the General Performance and The Stability Limits

Reducing grid harmonics and increasing grid stability are both major issues for the operation of rail vehicles. For stability investigation of complex power systems, simplified system models are in need in order to reduce the model complexity and the simulation time. In this thesis work the effect of modelling a voltage source converter (VSC) for traction power system with and without the detailed pulse width modulated (PWM)-switch model is modeled. Effect of different operating conditions for the switching model on the harmonic content of the system is also analyzed. The same disturbance is imposed for the two models and the low frequency oscillation of the DC- link voltage response is compared and analyzed. The effect of semiconductor switching on the stability limit of the system is also investigated. Furthermore, the performance of a PWM time delay compensation technique during transient is analyzed. The result shows that in the model including the switching the DC- link voltage oscillation is damped and has a better stability margin compared to the average model. In the detailed switching model a converter loss is included while in the average model a no loss ideal case scenario is considered. As far as the switching harmonic is considered, the switching model with an operational condition of a high switching frequency and a switching frequency with an integer multiple of the fundamental frequency has a low harmonic content on the system compared to the operating condition of a low switching frequency which is not integer multiple of the fundamental frequency. A unipolar voltage switching technique has also a tremendous advantage over the bipolar voltage switching technique as far as this harmonic content in the system is concerned. Using a unipolar voltage switching technique reduces the harmonic content in the overall railway system. For triangular carrier modulators, an average time delay from the reference voltage to the actuated PWM terminal voltage of half the switching frequency is assumed .The delay in DC- link voltage control loop caused by the switching dead-time effect was improved by compensation of dead-time in the inverse-park transformation block of the control loop. The comparison of the compensated and non-compensated model proves that the compensated model is better in terms of the overshoot of amplitude of transient.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ntnu-9094
Date January 2009
CreatorsAssefa, Hana Yohannes
PublisherNorges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, Institutt for elkraftteknikk
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds