Return to search

Energy, power, and office buildings : design and analysis of an off-peak cooling system using structural mass storage

Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH. / Includes bibliographical references. / As the electric utilities face ever increasing peak power production requirements, (mostly from the commercial sector) scheduled "time-of-day" pricing schemes have become imperative. At present, most conservation strategies for commercial buildings focus on the reduction of energy consumption orchestrated (justifiably) by t he expense of electrical energy for lighting and cooling which dominate their loads. However, these conservation schemes, such as higher efficiency lamps, various glazing techniques, etc., do not alter the time of consumption nor do they utilize the lower off-peak electrical rates. The results are as before; high energy costs due to peak (daytime) consumption, and projected savings from the various conservation strategies are overshadowed or not realized. This thesis investigates a decentralized off-peak cooling system for commercial office buildings utilizing the structural mass as the thermal storage medium. The system incorporates an exposed concrete ceiling slab cooled at night with imbedded chilled water pipes and taking full advantage of off-peak electrical rates. The ceiling/slab - waterpipe system is modeled via two-dimensional finite difference methods for transient analysis. The sensitivity of the system to pipe size and spacing, internal loads, water temperatures, and surface geometry is assessed. The analytical results suggest the potential for application, however, additional research must be undertaken to investigate the economic implications of fabrication and to more adequately determine the effects of non-planar surface geometry. / by Rory Christopher Mathis. / M.S.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/75913
Date January 1982
CreatorsMathis, Rory Christopher
ContributorsTimothy E. Johnson., Massachusetts Institute of Technology. Dept. of Architecture., Massachusetts Institute of Technology. Dept. of Architecture.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format216 leaves, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0022 seconds