Return to search

Multi-level Control Architecture and Energy Efficient Docking for Cooperative Unmanned Air Vehicles

In recent years, significant progress has been made in improving the performance of unmanned air vehicles in terms of aerodynamic performance, endurance, autonomy, and the capability of on-board sensor packages. UAVs are now a vital part of both military actions and scientific research efforts. One of the newest classes of UAV is the high altitude long endurance or HALE UAV. This thesis considers the high-level control problem for a unique HALE mission involving cooperative solar powered UAVs. Specifically addressed is energy efficient path planning for vehicles that physically link together in flight to form a larger, more energy efficient HALE vehicle.

Energy efficient docking is developed for the case of multiple vehicles at high altitude with negligible wind. The analysis considers a vehicle governed by a kinematic motion model with bounded turn rate in planar constant altitude flight. Docking is demonstrated using a platform-in-the-loop simulator which was developed to allow virtual networked vehicles to perform decentralized path planning and estimation of all vehicle states. Vehicle behavior is governed by a status which is commanded by a master computer and communication between vehicles is intermittent depending on each vehicle's assessment of situational awareness. Docking results in a larger vehicle that consumes energy at 21% of the rate of an individual vehicle and increases vehicle range by a factor of three without considering solar recharging. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/31192
Date28 March 2011
CreatorsYoung, Stephen Alexander
ContributorsMechanical Engineering, Furukawa, Tomonari, Kurdila, Andrew J., Woolsey, Craig A.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationYoung_SA_T_2011.pdf

Page generated in 0.0024 seconds