Return to search

Integração energética da biorrefinaria de cana-de-açúcar para produção de etanol de primeira e segunda geração e energia elétrica

Made available in DSpace on 2016-06-02T19:56:53Z (GMT). No. of bitstreams: 1
5833.pdf: 3594761 bytes, checksum: 22ca28a1942a7b8b691c4f52f98f2924 (MD5)
Previous issue date: 2014-02-17 / Universidade Federal de Sao Carlos / The increase in demand for biofuels has driven the development of new technologies such as ethanol production from sugarcane bagasse hydrolysis. Given the importance of Brazil in the ethanol market, the inclusion of technology of second generation ethanol will intensify its production. Energy integration in a sugarcane biorefinery provides important advantages for industrial processes such as better energy management, environmental benefits and increased ethanol production. The last factor is due to lower steam consumption in plant with energy integration, so, less bagasse is needed for cogeneration and a fraction of the surplus can be made available for production of second generation ethanol. In this context, the present study conducted energy integration of a sugarcane biorefinery in order to reduce the consumption of utilities. The technique used was Pinch analysis, an established methodology in the area of energy integration. The biorefinery used in this work consists of process for first and second generation ethanol and electricity production simulated in EMSO software (Environment for Modeling, Simulation, and Optimization). Six different scenarios of biorefinery were evaluated, which differ by pretreatment for bagasse (hydrothermal, diluted acid and steam explosion) and by inclusion or not of pentoses fermentation step. Processes that consider pentoses fermentation step have higher ethanol production when compared to processes that do not make use of pentoses fraction, but steam consumption increases in the same order of magnitude of ethanol production. For the six scenarios evaluated energy integration demonstrated a reduction in energy consumption over 50% when compared to corresponding processes without energy integration and over 30% when compared to process with project integration, as commonly found in Brazilian plants. Besides the economic advantage due to decreased costs of hot and cold utilities, the energy integration provides better energy management, reduction in emission of gases and liquid effluents and increases the availability of bagasse for production of second generation ethanol and/or electricity. / O aumento na demanda por biocombustíveis tem impulsionado o desenvolvimento de novas tecnologias como a produção de etanol a partir da hidrólise do bagaço de cana-de-açúcar. Dada a grande importância do Brasil no mercado de etanol, a inserção da tecnologia de etanol de segunda geração potencializará o crescimento da produção. A integração energética em uma biorrefinaria de cana-de-açúcar proporciona importantes vantagens ao processo industrial como a melhor gestão de energia, benefícios ambientais e aumento na produção de etanol. O último fator se deve ao menor consumo de vapor na planta com a integração energética, logo, menos bagaço é necessário para o sistema de cogeração e parte do excedente pode ser disponibilizado para a produção de etanol de segunda geração. Neste contexto, o presente estudo realizou a integração energética de uma biorrefinaria de cana-de-açúcar com o objetivo de reduzir o consumo de utilidades. A técnica utilizada foi a análise Pinch, metodologia consagrada na área de integração energética. A biorrefinaria empregada neste trabalho consiste do processo de produção de etanol de primeira e segunda geração e energia elétrica por simulação computacional realizada no software EMSO (Environment for Modeling, Simulation, and Optimization). Foram avaliados seis cenários diferentes da biorrefinaria, os quais diferem pelo tipo de pré-tratamento para o bagaço (hidrotérmico, ácido diluído e explosão a vapor) e pela consideração ou não da etapa de fermentação das pentoses. Os processos com os pré-tratamentos hidrotérmico, ácido diluído e explosão a vapor com a inclusão da etapa de fermentação das pentoses tem maior produção de etanol quando comparado aos processos que não fazem uso da fração de pentoses, porém o consumo de vapor aumenta na mesma ordem de grandeza da produção de etanol. Para os seis cenários avaliados a aplicação da integração energética demonstrou uma redução no consumo de energia acima de 50% se comparada aos correspondentes processos sem integração energética e acima de 30% se comparada aos processos com integração de projeto, como comumente encontrados nas usinas brasileiras. Além da vantagem econômica, devido à diminuição nos custos de utilidades quentes e frias, a integração energética do processo proporciona melhor gestão de energia, redução na emissão de gases e efluentes líquidos e aumenta a disponibilidade de bagaço para a produção de etanol de segunda geração e/ou energia elétrica.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4133
Date17 February 2014
CreatorsOliveira, Cássia Maria de
ContributorsCosta, Caliane Bastos Borba
PublisherUniversidade Federal de São Carlos, Programa de Pós-graduação em Engenharia Química, UFSCar, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds