Return to search

Application of valence electron energy loss spectroscopy (VEELS) in low dimensional nanostructured materials. / 價電子能量損失譜在低維納米材料中的應用 / CUHK electronic theses & dissertations collection / Application of valence electron energy loss spectroscopy (VEELS) in low dimensional nanostructured materials. / Jia dian zi neng liang sun shi pu zai di wei na mi cai liao zhong de ying yong

As another important features in VEELS, the plasmon excitations (including the volume plasmon and surface/interfacial plasmon) are also utilized to identify different phases and multi compositions within materials. The microstructure and electronic structure evolution of silicon-rich oxide (SRO) films as a function of the annealing temperature are investigated using TEM and VEELS. The as-deposited SiO film is found to be a single phase with only single volume plasmon presents in VEEL spectrum and almost no interfacial plasmon is observed. After the annealing (Tanneal>400°C), it begins to decomposite into Si and SiO2 and the single phase changed into cluster/matrix nanocomposites where the interfacial plasmon appears. The Si duster size and its concentration increase as the annealing temperature increases. / Firstly, the applications of VEELS in investigating the electronic structures of ZnO nanowires with different diameter and surface shapes are demonstrated. Using the momentum transferred technique, one of the interband transitions with dipole-forbidden nature is identified. Several size dependent features are found on the interband transitions and plasmon oscillations of ZnO nanowires with small diameter and circular cross section, which are mainly due to the large surface to volume ratio and existence of Oxygen dangling bonds on those ZnO wires. / Further explorations on the electronic structure in the vicinity of band gap are carried out for the ZnO nanowires doped with different dopants (Co, Er, Yb) and different dopant concentrations. In order to obtain trustworthy information in the very low energy range of VEELS a narrow zero loss peak and elimination of Cerenkov effect and surface losses are necessary, which can be realized by incorporation of the gun monochromator in the TEM and taking spectrum at a momentum transfer slightly greater than zero. Band tail states (∼2-3.3 eV) are found to be generated in the ZnO nanowires after the ion implantation and their density of states increase with the ion fluence increases. The partially removal of those defect states by the Oxygen annealing is also observed in VEELS. On the other hand, interesting mid-gap state(s), which is dopant-sensitive (as it is only observed in the rare earth (Er and Yb) doped ZnO nanowires, but not in the Co-doped ones), does not show obvious change after the O annealing. The impact of these electronic structure changes on the material properties are also discussed. / In the end of the thesis, some of the practical limitations and contradictories on the energy resolution (DeltaE), spatial resolution (Delta x), and the momentum resolution (Deltaq) when carrying out the various VEELS study are summarized. The compromise made among these resolution limits is also discussed. / In this work, the important experimental parameters and appropriate data processing methods to generate trustworthy data are discussed. Based on that, three material systems, i.e., pure ZnO nanowires, doped ZnO nanowires, and Si/SiO/SiO2 composite films are investigated. Various information on the material microstructure/electronic structure is interpreted using the VEELS data. / The valence-electron energy-loss spectroscopy (VEELS) contains information on the electronic structures of materials, including the band gap the single-electron interband transitions and the plasmon oscillations. When operating in transmission electron microscope (TEM), the excellent spatial resolution enables the VEELS not only exploring the local electronic structures of individual low dimensional nanostructured materials, but also building up correlations between the electronic structure and microstructure. In addition, the capability in carrying out the momentum transfer dependent study in VEELS allows the investigation on the dispersion of plasmons and single electron excitations in the momentum space. The optically forbidden transitions, which are not allowed in conventional optical method, can also be excited at high momentum transfer values using VEELS. / Wang, Juan = 價電子能量損失譜在低維納米材料中的應用 / 王娟. / "September 2007." / Adviser: Li Quan. / Source: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 1267. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 122-133). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307. / Wang, Juan = Jia dian zi neng liang sun shi pu zai di wei na mi cai liao zhong de ying yong / Wang Juan.

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344074
Date January 2007
ContributorsWang, Juan, Chinese University of Hong Kong Graduate School. Division of Physics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, theses
Formatelectronic resource, microform, microfiche, 1 online resource (xvii, 133 p. : ill.)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0022 seconds