The amount of distributed generation (DG) is increasing worldwide, and it is located in distribution networks close to consumers or even in the consumers¡¦ side of the meter. Therefore, the net demand to be supplied through transmission and distribution networks may decrease, allowing to postpone reinforcement of existing networks. This thesis presents a methodology for assessing the potential benefits of using non--constructional reinforcement strategies to relieve distribution network congestion and increase the utilization of the network assets. Due to the randomness of involved variables (load demand patterns, DG hourly production, DG availability, etc.), a simulation approach is used to model the uncertainties. The benefits of DG, energy storage (ES), and demand response (DR) on congestion relief and investment deferment are evaluated. The analyzed items include: the distribution network investment avoided cost, levelized annual cost, hourly overload probability, and hourly overload risk. Simulation results indicate the potential benefits of non--traditional strategies in increasing the distribution network utilization and relieving network congestion.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0729110-165744 |
Date | 29 July 2010 |
Creators | Huang, Po-yi |
Contributors | Le-Ren Chang-Chien, Chan-Nan Lu, Chih-Wen Liu, Tzung-Lin Lee |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0729110-165744 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0049 seconds