Return to search

Ground Source Heat Pumps: Considerations for Large Facilities in Massachusetts

There has been a significant increase in the interest and implementations of heat pump systems for HVAC purposes in general and of ground source heat pumps (GSHPs) in particular. Though these systems have existed for decades, primarily in Europe, there has been an upward trend particularly in the United States in recent years. With the world-wide push toward CO2 emissions reduction targets, interest in heat pump systems to reduce CO2 emissions from heating and cooling is likely to only increase in the future. However, more than ever, financial considerations are also key factors in the implementation of any system.
Ground source heat pumps (GSHPs) coupled to vertical borehole heat exchangers (BHEs) have been promoted as a viable heat pump system in climates where traditional air source heat pumps (ASHPs) may operate inefficiently. This type of system claims superior performance to ASHPs due to the relatively consistent temperature of the ground compared to the air, offering a higher temperature heat source in the heating season and a lower temperature sink in the cooling season. Projects designing and installing such a GSHP system have been implemented at large scales on several university campuses to provide heating and cooling.
In this study, we aim to test the idea that a GSHP system, as a replacement for an existing CHP heating and conventional cooling systems, could reduce CO2 emissions, as well as provide a cost benefit to a large energy consumer, in this case the University of Massachusetts. This will be done using the existing heating and cooling loads provided by the conventional system and an established technique of modeling the heat pumps and BHEs. The GSHP system is modeled to follow the parameters of industry standards and sized to provide the best overall lifetime cost. The result on the overall annual costs, emissions, and university microgrid are considered.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-2054
Date02 April 2021
CreatorsWagner, Eric
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses
Rightshttp://creativecommons.org/licenses/by/4.0/

Page generated in 0.0018 seconds