Return to search

Estudo de técnicas de otimização para reconstrução de energia de jatos no primeiro nível de seleção de eventos do experimento ATLAS

Submitted by isabela.moljf@hotmail.com (isabela.moljf@hotmail.com) on 2017-07-21T15:18:26Z
No. of bitstreams: 1
davispereirabarbosa.pdf: 59375438 bytes, checksum: b4bcce98691deb4c521a6546b7bb6083 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-08T18:22:42Z (GMT) No. of bitstreams: 1
davispereirabarbosa.pdf: 59375438 bytes, checksum: b4bcce98691deb4c521a6546b7bb6083 (MD5) / Made available in DSpace on 2017-08-08T18:22:42Z (GMT). No. of bitstreams: 1
davispereirabarbosa.pdf: 59375438 bytes, checksum: b4bcce98691deb4c521a6546b7bb6083 (MD5)
Previous issue date: 2012-07-03 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Atualmente, o LHC é o maior e mais energético colisionador de partículas em fun-cionamento, colidindo prótons com energias de 7 TeV no centro de massa a cada 50 ns. Vários detectores estão posicionados para medir as características das partículas após a colisão, sendo então utilizadas para verificar a validade das novas teorias de física de partículas. O ATLAS é o maior dos detectores do LHC, estando em operação desde 2009 e fornecendo uma grande quantidade de dados para as análise físicas para a busca do Higgs. Um dos principais responsáveis pelas qualidade das informações adquiridas pelo ATLAS é o seu sistema de seleção de eventos online que foi desenvolvido para rejeitar informações irrelevantes das colisões, excluindo a enorme quantidade de ruído de fundo do experimento. Entretanto, o LHC passará por atualizações visando o au-mento da sua luminosidade em uma ordem de grandeza (103' para 1035) nos próximos dez anos, gerando assim uma maior quantidade de eventos por colisão, aumentando a probabilidade de empilhamento de eventos. Desta forma, o ATLAS e o seu sistema de seleção de eventos online também deverão sofrer modificações para atender aos novos requisitos do experimento. O presente trabalho realizou estudos sobre a utilização de novos algoritmos para estimação da energia de jatos no primeiro nível de seleção de eventos do detector ATLAS. Inicialmente, uma janela bidimensional é aplicada na região onde o jato foi identificado, visando a redução do impacto do empilhamento dos eventos nas bordas desta região. Em seguida, é proposta a utilização da informação de profundidade do calorímetro hadrônico do ATLAS na estimação de energia do jato, através de técnicas de otimização linear (mínimos quadrados) e não-linear (redes neu-rais artificiais). Os resultados obtidos, através de simulações Monte Carlo, mostraram que a informação de profundidade do TileCal reduz o erro de estimação da energia dos jatos em aproximadamente 23%, enquanto que a utilização da janela bidimen-sional melhora o comportamento inicial da curva de acionamento de jatos indicando sua efetividade em cenários de empilhamento de eventos. / The LHC is the biggest and most energetic particle collider, performing proton-proton collisions with 7 TeV on center of mass at 50 ns rate. Several detectors are placed along the LHC in order to measure the collisions results, envisaging the validation or rejection of the new particle physics theories. The ATLAS experiment is the biggest detector at LHC, operating very well since 2009 and providing large amount of data for the physics analysis envisaging the search for the Higgs Particle. The online event selection system (trigger) is one of the major reponsibles for the quality of the acquired data in ATLAS, it was designed to reject the huge amount of background noise generated at LHC. However, the LHC upgrade for high luminosity (10' to 1035) in the following ten years will increase the amount of events per collison, increasing the event pileup probability. In order to cope with the new luminosity requirements, the ATLAS and its trigger system will also upgrade its components and algorithms. This work presents the studies about the use of new algorithms for jet energy estimation in the first level of the ATLAS trigger system. Envisaging the reduction of the pileup effect, a bidimensional window is applied on the region where the event was identified (RoI). Additionally, the longitudinal information from the ATLAS hadronic calorimeter (TileCal) is used in order to improve the jet energy estimation, using linear (Least Square) and nonlinear (Artificial Neural Networks) optimization techniques. The achieved results, through Monte Carlo simulations, show that the TileCal logitudinal information reduces the energy estimation error by 23%, while the bidimensional window slightly improves the jet turn on curve indicating the reduction of the pileup effects.

Identiferoai:union.ndltd.org:IBICT/oai:hermes.cpd.ufjf.br:ufjf/5476
Date03 July 2012
CreatorsBarbosa, Davis Pereira
ContributorsCerqueira, Augusto Santiago, Duque, Carlos Augusto, Macedo, Érica Ribeiro Polycarpo, Souza Filho, João Baptista de Oliveira e
PublisherUniversidade Federal de Juiz de Fora (UFJF), Programa de Pós-graduação em Engenharia Elétrica, UFJF, Brasil, Faculdade de Engenharia
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFJF, instname:Universidade Federal de Juiz de Fora, instacron:UFJF
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0035 seconds