<p> The lack of cutting transportation during drilling operations can lead to large amounts of non productive time and costly solutions to address the issue. The objective of this study was to investigate the cutting velocity through an experimental approach. Dimensionless groups were formed based on the independent variables that affected cutting velocity. The experimental approach was analyzed through film software, which allowed for the cutting velocities to be calculated. Regression models of cutting velocity with respect to each dimensionless group were formed and validated through a statistical analysis. Only the second dimensionless group (?2) representing the volume of cuttings injected into the drillpipe with respect to the cubed value of the outer diameter of the drillpipe was proven to be insignificant. </p><p> Once the remaining regression models were validated, multiple linear regression analyses were conducted to relate each dimensionless parameter to the cutting velocity. This introduced a new empirical model to represent the cutting velocity based on the five significant dimensionless groups outlined in this study. The multiple linear regression model yielded an R-squared value of .81, which suggests a strong correlation for the data. This model was also validated through statistics. Each parameter except for the intercept of the model was confirmed to be significant. Other parameters that were excluded from the model due to the lack of equipment precision could be examined. A sensitivity analysis was conducted to highlight how each dimensionless group directly affected the cutting velocity. New correlations and trends may be estimated with more data from additional experiments outside the range of this study. Overall, this will allow the foundation of the model to be further improved.</p><p>
Identifer | oai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:10981337 |
Date | 12 April 2019 |
Creators | Salazar, Brandon |
Publisher | University of Louisiana at Lafayette |
Source Sets | ProQuest.com |
Language | English |
Detected Language | English |
Type | thesis |
Page generated in 0.0026 seconds