Return to search

Investigation of lateral effects on shock initiation of homogeneous liquid nitromethane

An experimental study of the process of shock initiation of detonation in liquid nitromethane sensitized with diethylenetriamine (DETA) was conducted. In particular, the effect of the lateral boundary conditions on the sensitivity of the explosive to shock stimuli was investigated. The explosive was tested in a "gap test" arrangement. Various charge diameters and different materials for the capsule that contained the test explosive were used. The arrival time of the shock front was recorded at different locations along the test charge and the light emitted in the cases where detonation was initiated in the test explosive was monitored. / It is found that the minimum shock strength necessary to initiate detonation in the explosive test mixture is greater if the test charge diameter is small. It is also found that for a given shock strength, the minimum charge radius that permits initiation corresponds to the distance necessary to establish detonation. / In charges with small diameters, interactions between the input shock and the charge capsule walls permit initiation for input shock strengths that would normally not be sufficient to cause initiation. The nature of these interactions is complex and the outcome of a shock initiation experiment cannot be predicted from mere knowledge of the impedance of the capsule material or the shock speed within it.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.33974
Date January 2001
CreatorsJette, Francois-Xavier.
ContributorsHiggins, Andrew J. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Mechanical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001873015, proquestno: MQ79077, Theses scanned by UMI/ProQuest.

Page generated in 0.0015 seconds