Return to search

Physical modelling of two phase flows in ladle-shroud systems

The onset of a 'late' rotating vortex over an off-centre drain nozzle at 2/3 radius was studied in an 1160-mm diameter tank. It was found that using a sloped bottom ladle could be beneficial in terms of steel yield, provided the exit nozzle is located 'centrically'. / Miner modification of the nozzle (skewed nozzle) to impart a radial component of velocity to the spinning vortex core was found to be effective in making AMEPA system sensitive to early slag entrainment phenomena by diverting the core away from the central vertical axis of the nozzle. / A 0.75 scale water model was constructed to simulate the flow of liquid steel through a ladle shroud in the presence of gas infiltration. It was found that the ladle shroud slag detector could be temporarily 'blinded' by gas bubbles or permanently blinded by a standing submerged gas jet.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.20914
Date January 1998
CreatorsKim, Hyoungbae, 1969-
ContributorsGuthrie, R. I. L. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Mining and Metallurgical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001658897, proquestno: MQ50631, Theses scanned by UMI/ProQuest.

Page generated in 0.0016 seconds